cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A385257 Decimal expansion of the surface area of a gyroelongated triangular bicupola with unit edge.

Original entry on oeis.org

1, 4, 6, 6, 0, 2, 5, 4, 0, 3, 7, 8, 4, 4, 3, 8, 6, 4, 6, 7, 6, 3, 7, 2, 3, 1, 7, 0, 7, 5, 2, 9, 3, 6, 1, 8, 3, 4, 7, 1, 4, 0, 2, 6, 2, 6, 9, 0, 5, 1, 9, 0, 3, 1, 4, 0, 2, 7, 9, 0, 3, 4, 8, 9, 7, 2, 5, 9, 6, 6, 5, 0, 8, 4, 5, 4, 4, 0, 0, 0, 1, 8, 5, 4, 0, 5, 7, 3, 0, 9
Offset: 2

Views

Author

Paolo Xausa, Jun 24 2025

Keywords

Comments

The gyroelongated triangular bicupola is Johnson solid J_44.

Examples

			14.660254037844386467637231707529361834714026269...
		

Crossrefs

Cf. A385256 (volume).
Essentially the same of A332133, A375193 and A010527.

Programs

  • Mathematica
    First[RealDigits[6 + 5*Sqrt[3], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J44", "SurfaceArea"], 10, 100]]

Formula

Equals 6 + 5*sqrt(3) = 6 + 5*A002194 = 6 + 10*A010527.
Equals the largest root of x^2 - 12*x - 39.

A375069 Decimal expansion of the sagitta of a regular hexagon with unit side length.

Original entry on oeis.org

1, 3, 3, 9, 7, 4, 5, 9, 6, 2, 1, 5, 5, 6, 1, 3, 5, 3, 2, 3, 6, 2, 7, 6, 8, 2, 9, 2, 4, 7, 0, 6, 3, 8, 1, 6, 5, 2, 8, 5, 9, 7, 3, 7, 3, 0, 9, 4, 8, 0, 9, 6, 8, 5, 9, 7, 2, 0, 9, 6, 5, 1, 0, 2, 7, 4, 0, 3, 3, 4, 9, 1, 5, 4, 5, 5, 9, 9, 9, 8, 1, 4, 5, 9, 4, 2, 6, 9, 0, 6
Offset: 0

Views

Author

Paolo Xausa, Jul 30 2024

Keywords

Examples

			0.133974596215561353236276829247063816528597373...
		

Crossrefs

Essentially the same as A334843.
Cf. A010527 (apothem), A104956 (area).
Cf. sagitta of other polygons with unit side length: A020769 (triangle), A174968 (square), A375068 (pentagon), A374972 (heptagon), A375070 (octagon), A375153 (9-gon), A375189 (10-gon), A375192 (11-gon), A375194 (12-gon).

Programs

Formula

Equals tan(Pi/12)/2 = A019913/2.
Equals 1 - sqrt(3)/2 = 1 - A010527.
Equals A152422^2 = (1 - A332133)^2. - Hugo Pfoertner, Jul 30 2024
Equals A334843-1/2. - R. J. Mathar, Aug 02 2024

A375193 Decimal expansion of the apothem (inradius) of a regular 12-gon with unit side length.

Original entry on oeis.org

1, 8, 6, 6, 0, 2, 5, 4, 0, 3, 7, 8, 4, 4, 3, 8, 6, 4, 6, 7, 6, 3, 7, 2, 3, 1, 7, 0, 7, 5, 2, 9, 3, 6, 1, 8, 3, 4, 7, 1, 4, 0, 2, 6, 2, 6, 9, 0, 5, 1, 9, 0, 3, 1, 4, 0, 2, 7, 9, 0, 3, 4, 8, 9, 7, 2, 5, 9, 6, 6, 5, 0, 8, 4, 5, 4, 4, 0, 0, 0, 1, 8, 5, 4, 0, 5, 7, 3, 0, 9
Offset: 1

Views

Author

Paolo Xausa, Aug 04 2024

Keywords

Comments

Apart from the first digit the same as A010527.

Examples

			1.8660254037844386467637231707529361834714026269...
		

Crossrefs

Cf. A188887 (circumradius), A375194 (sagitta), A178809 (area).
Cf. apothem of other polygons with unit side length: A020769 (triangle), A020761 (square), A375067 (pentagon), A010527 (hexagon), A374971 (heptagon), A174968 (octagon), A375152 (9-gon), A179452 (10-gon), A375191 (11-gon).

Programs

Formula

Equals cot(Pi/12)/2 = (2 + sqrt(3))/2 = A019973/2.
Equals 1/(2*tan(Pi/12)) = 1/(2*A019913).
Equals A188887*cos(Pi/12) = A188887*A019884.
Equals A188887 - A375194.
Equals A332133^2 = 2 - A375069. - Hugo Pfoertner, Aug 04 2024

A064324 a(n) = a(n-1) + floor(a(n-2)/2) with a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 22, 30, 41, 56, 76, 104, 142, 194, 265, 362, 494, 675, 922, 1259, 1720, 2349, 3209, 4383, 5987, 8178, 11171, 15260, 20845, 28475, 38897, 53134, 72582, 99149, 135440, 185014, 252734, 345241, 471608, 644228, 880032
Offset: 0

Views

Author

Henry Bottomley, Sep 11 2001

Keywords

Comments

a(n)/a(n-1) approaches (1+sqrt(3))/2 = 1.3660254... = A332133 for large n.

Examples

			a(5) = a(4)+floor(a(3)/2) = 4+floor(3/2) = 5.
		

Crossrefs

Programs

  • Magma
    [n le 2 select n else Self(n-1)+Floor(Self(n-2)/2): n in [1..45]]; // Bruno Berselli, Apr 20 2012
  • Mathematica
    RecurrenceTable[{a[n] == a[n-1] + Floor[a[n-2]/2], a[0] == 1, a[1] == 2}, a, {n, 0, 50}] (* G. C. Greubel, May 04 2019 *)
    nxt[{a_,b_}]:={b,Floor[a/2]+b}; NestList[nxt,{1,2},50][[;;,1]] (* Harvey P. Dale, Jul 28 2023 *)
  • PARI
    { for (n=0, 400, if (n>1, a=a1 + a2\2; a2=a1; a1=a, if (n, a=a1=2, a=a2=1)); write("b064324.txt", n, " ", a) ) }; \\ Harry J. Smith, Sep 11 2009
    

Formula

a(n) = A064323(n) + 1.

A064323 a(n) = a(n-1)+ceiling(a(n-2)/2) with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 40, 55, 75, 103, 141, 193, 264, 361, 493, 674, 921, 1258, 1719, 2348, 3208, 4382, 5986, 8177, 11170, 15259, 20844, 28474, 38896, 53133, 72581, 99148, 135439, 185013, 252733, 345240, 471607, 644227, 880031, 1202145
Offset: 0

Views

Author

Henry Bottomley, Sep 11 2001

Keywords

Comments

a(n)/a(n-1) approaches (1+sqrt(3))/2 = 1.3660254... = A332133 for large n.

Examples

			a(5) = a(4)+ceiling(a(3)/2) = 3+ceiling(2/2) = 4.
		

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else Self(n-1)+Ceiling(Self(n-2)/2): n in [1..45]]; // Bruno Berselli, Apr 20 2012
  • Maple
    a:= proc(n) option remember;
          `if`(n<2, n, a(n-1)+ceil(a(n-2)/2))
        end:
    seq(a(n), n=0..48);  # Alois P. Heinz, Jan 26 2023
  • Mathematica
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==a[n-1]+Ceiling[a[n-2]/2]},a,{n,50}] (* Harvey P. Dale, Nov 06 2013 *)
  • PARI
    for (n=0, 400, if (n>1, a=a1 + ceil(a2/2); a2=a1; a1=a, if (n, a=a1=1, a=a2=0)); write("b064323.txt", n, " ", a) )  \\ Harry J. Smith, Sep 11 2009
    
  • PARI
    first(n)=if(n<2, return([0,1][1..n+1])); my(v=vector(n+1)); v[2]=1; for(k=3,n+1, v[k]=v[k-1]+(v[k-2]+1)\2); v \\ Charles R Greathouse IV, Jan 26 2023
    

Formula

a(n) = A064324(n)-1.
Showing 1-5 of 5 results.