A332140 a(n) = 4*(10^(2n+1)-1)/9 - 4*10^n.
0, 404, 44044, 4440444, 444404444, 44444044444, 4444440444444, 444444404444444, 44444444044444444, 4444444440444444444, 444444444404444444444, 44444444444044444444444, 4444444444440444444444444, 444444444444404444444444444, 44444444444444044444444444444, 4444444444444440444444444444444
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Programs
-
Maple
A332140 := n -> 4*((10^(2*n+1)-1)/9-10^n);
-
Mathematica
Array[4 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0] LinearRecurrence[{111,-1110,1000},{0,404,44044},20] (* Harvey P. Dale, Jul 06 2021 *)
-
PARI
apply( {A332140(n)=(10^(n*2+1)\9-10^n)*4}, [0..15])
-
Python
def A332140(n): return (10**(n*2+1)//9-10**n)*4