A332147 a(n) = 4*(10^(2*n+1)-1)/9 + 3*10^n.
7, 474, 44744, 4447444, 444474444, 44444744444, 4444447444444, 444444474444444, 44444444744444444, 4444444447444444444, 444444444474444444444, 44444444444744444444444, 4444444444447444444444444, 444444444444474444444444444, 44444444444444744444444444444, 4444444444444447444444444444444
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Programs
-
Maple
A332147 := n -> 4*(10^(2*n+1)-1)/9+3*10^n;
-
Mathematica
Array[4 (10^(2 # + 1)-1)/9 + 3*10^# &, 15, 0] LinearRecurrence[{111,-1110,1000},{7,474,44744},20] (* Harvey P. Dale, Mar 08 2022 *)
-
PARI
apply( {A332147(n)=10^(n*2+1)\9*4+3*10^n}, [0..15])
-
Python
def A332147(n): return 10**(n*2+1)//9*4+3*10**n