A332211 Lexicographically earliest permutation of primes such that a(n) = 2^n - 1 when n is one of the Mersenne prime exponents (in A000043).
2, 3, 7, 5, 31, 11, 127, 13, 17, 19, 23, 29, 8191, 37, 41, 43, 131071, 47, 524287, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 2147483647, 103, 107, 109, 113, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 2305843009213693951, 269, 271, 277, 281, 283, 293, 307, 311, 313
Offset: 1
Keywords
Examples
For p in A000043: 2, 3, 5, 7, 13, 17, 19, ..., a(p) = (2^p)-1, thus a(2) = 2^2 - 1 = 3, a(3) = 7, a(5) = 31, a(7) = 127, a(13) = 8191, a(17) = 131071, etc., with the rest of positions filled by the least unused prime: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ... 2, 3, 7, 5, 31, 11, 127, 13, 17, 19, 23, 29, 8191, 37, 41, 43, 131071, ...
Links
- Antti Karttunen, Table of n, a(n) for n = 1..3217
Crossrefs
Programs
-
PARI
up_to = 127; A332211list(up_to) = { my(v=vector(up_to), xs=Map(), i=1, q); for(n=1,up_to, if(isprime(q=((2^n)-1)), v[n] = q, while(mapisdefined(xs,prime(i)), i++); v[n] = prime(i)); mapput(xs,v[n],n)); (v); }; v332211 = A332211list(up_to); A332211(n) = v332211[n]; \\ For faster computing of larger values, use precomputed values of A000043: v000043 = [2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281,3217]; up_to = v000043[#v000043]; A332211list(up_to) = { my(v=vector(up_to), xs=Map(), i=1, q); for(n=1,up_to, if(vecsearch(v000043,n), q = (2^n)-1, while(mapisdefined(xs,prime(i)), i++); q = prime(i)); v[n] = q; mapput(xs,q,n)); (v); };
Comments