cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A332221 a(n) = A156552(sigma(n)).

Original entry on oeis.org

0, 2, 3, 8, 5, 11, 7, 10, 32, 13, 11, 35, 17, 23, 23, 1024, 13, 66, 19, 37, 31, 27, 23, 43, 1024, 37, 39, 71, 21, 55, 31, 38, 47, 29, 47, 72, 257, 43, 71, 45, 37, 95, 67, 75, 133, 55, 47, 4099, 258, 2050, 55, 49, 29, 87, 55, 87, 79, 45, 43, 151, 2049, 95, 263, 1073741824, 75, 111, 259, 77, 95, 111, 55, 138, 4097, 517, 4099, 83
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2020

Keywords

Crossrefs

Cf. A000203, A156552, A058063, A332216 (fixed points), A332218, A332222.

Programs

  • Mathematica
    Array[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ DivisorSigma[1, #]]] &, 76] (* Michael De Vlieger, Feb 12 2020 *)
  • PARI
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A332221(n) = A156552(sigma(n));

Formula

a(n) = A156552(A000203(n)).
A000120(a(n)) = A058063(n).

A332217 Numbers k for which the 2-adic valuation of sigma(k) is zero and its 3-adic valuation is 1 (so that sigma(k) is an odd multiple of 3, but not of 9).

Original entry on oeis.org

2, 8, 18, 49, 50, 72, 128, 162, 169, 196, 200, 242, 361, 441, 450, 512, 578, 648, 676, 784, 961, 968, 1058, 1152, 1225, 1250, 1369, 1444, 1458, 1521, 1682, 1764, 1800, 1849, 2178, 2312, 2704, 3136, 3200, 3249, 3362, 3721, 3844, 3969, 4050, 4225, 4232, 4418, 4489, 4608, 4802, 4900, 5000
Offset: 1

Views

Author

Antti Karttunen, Feb 11 2020

Keywords

Crossrefs

Subsequence of A067051, which is a subsequence of A028982.
Cf. A332218 (a subsequence).

Programs

  • Mathematica
    Select[Range[5*10^3], IntegerExponent[DivisorSigma[1, #], {2, 3}] === {0, 1} &] (* Michael De Vlieger, Feb 12 2020 *)
  • PARI
    isA332217(n) = ((sigma(n)%2)&&(valuation(sigma(n),3)==1));

Formula

{n: A000035(A000203(n))*A007949(A000203(n))==1}.

A332218 Numbers k such that A332221(k) = A156552(sigma(k)) is 2*{an odd square}.

Original entry on oeis.org

2, 162, 441, 2704, 4225, 275194921
Offset: 1

Views

Author

Antti Karttunen, Feb 11 2020

Keywords

Comments

Any even term of A332216 must occur also in this sequence.

Examples

			  a(n)              -> sigma(a(n))              -> A156552(sigma(a(n)))
     2 = 2^1 * 1^2  ->    3 = 3^1               ->      2 = 2^1 * 1^1,
   162 = 2^1 * 3^4  ->  363 = 3^1 * 11^2        ->     98 = 2^1 * 7^2,
   441 = 3^2 * 7^2  ->  741 = 3^1 * 13^1 * 19^1 ->    578 = 2^1 * 17^2,
  2704 = 2^4 * 13^2 -> 5673 = 3^1 * 31^1 * 61^1 -> 526338 = 2^1 * 3^6 * 19^2,
  4225 = 5^2 * 13^2 -> 5673 = 3^1 * 31^1 * 61^1 -> 526338 = 2^1 * 3^6 * 19^2,
and
275194921 = 53^2 * 313^2 -> 281384229 = 3^1 * 7^1 * 181^2 * 409^1 -> 9671406556943421676716050 = 2^1 * 5^2 * 7^2 * 62829235873^2.
		

Crossrefs

Subsequence of A332217A067051A028982.

Programs

  • Mathematica
    Select[Range@ 5000, And[IntegerQ[#], OddQ[#]] &@ Sqrt[#/2] &@ Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ DivisorSigma[1, #]]] &] (* Michael De Vlieger, Feb 12 2020 *)
  • PARI
    \\ Needs also code from A156552:
    istosq(n) = ((1==valuation(n,2))&&issquare(n/2));
    for(n=1,2^25,if(istosq(A156552(sigma(n*n))),print1(n*n,", ")); if(istosq(A156552(sigma(2*n*n))),print1(2*n*n,", ")));
Showing 1-3 of 3 results.