cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332229 Even numbers k such that A156552(k) is not a power of prime, and for which A323243(k) = sigma(A156552(k)) is congruent to 2 modulo 8.

Original entry on oeis.org

290, 434, 550, 826, 858, 1394, 1798, 2254, 2418, 2546, 2950, 3094, 3910, 4150, 4382, 4930, 5590, 6138, 6358, 6390, 6710, 6966, 7514, 7546, 7622, 7658, 7990, 8550, 8798, 8906, 9230
Offset: 1

Views

Author

Antti Karttunen, Feb 13 2020

Keywords

Comments

Numbers k for which A156552(k) is in A332228.
Sequence A005940(1+A332228(n)), n >= 1, sorted into ascending order.

Crossrefs

Programs

  • PARI
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    isA332228(n) = ((n%2)&&!isprimepower(n)&&2==(sigma(n)%8));
    isA332229(n) = isA332228(A156552(n));
    
  • PARI
    v156552sigs = readvec("a156552.txt"); \\ Factorization file for A156552 prepared by Hans Havermann, available at https://oeis.org/A156552/a156552.txt
    isA156552not_a_primepower(n) = if(n<=2,0,my(prsig=v156552sigs[n]); length(prsig[1])>1);
    A323243(n) = if(n<=2,n-1,my(prsig=v156552sigs[n],ps=prsig[1],es=prsig[2]); prod(i=1,#ps,((ps[i]^(1+es[i]))-1)/(ps[i]-1)));
    isA332229(n) = (!(n%2)&&isA156552not_a_primepower(n)&&(2==(A323243(n)%8)));
    k=0; for(n=1,10000,if(isA332229(n),k++; print1(n,", ")));