A332229 Even numbers k such that A156552(k) is not a power of prime, and for which A323243(k) = sigma(A156552(k)) is congruent to 2 modulo 8.
290, 434, 550, 826, 858, 1394, 1798, 2254, 2418, 2546, 2950, 3094, 3910, 4150, 4382, 4930, 5590, 6138, 6358, 6390, 6710, 6966, 7514, 7546, 7622, 7658, 7990, 8550, 8798, 8906, 9230
Offset: 1
Keywords
Links
Programs
-
PARI
A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 isA332228(n) = ((n%2)&&!isprimepower(n)&&2==(sigma(n)%8)); isA332229(n) = isA332228(A156552(n));
-
PARI
v156552sigs = readvec("a156552.txt"); \\ Factorization file for A156552 prepared by Hans Havermann, available at https://oeis.org/A156552/a156552.txt isA156552not_a_primepower(n) = if(n<=2,0,my(prsig=v156552sigs[n]); length(prsig[1])>1); A323243(n) = if(n<=2,n-1,my(prsig=v156552sigs[n],ps=prsig[1],es=prsig[2]); prod(i=1,#ps,((ps[i]^(1+es[i]))-1)/(ps[i]-1))); isA332229(n) = (!(n%2)&&isA156552not_a_primepower(n)&&(2==(A323243(n)%8))); k=0; for(n=1,10000,if(isA332229(n),k++; print1(n,", ")));
Comments