A332244 Number of chains of length n in the lattice of set partitions of [2n] ordered by refinement.
1, 2, 45, 8176, 5967927, 12354550875, 58745934381618, 557269710685272585, 9536970947556120868800, 273107814151944184186060560, 12345107536247705318429028256740, 840776466106445249176017830108333910, 83061829400676435859326576547506817501212
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..133
- Wikipedia, Lattice (order)
- Wikipedia, Partition of a set
Crossrefs
Cf. A331955.
Programs
-
Maple
b:= proc(n, k, t) option remember; `if`(k<0, 0, `if`({n, k}={0}, 1, add(`if`(k=1, 1, b(v, k-1, 1))*Stirling2(n, v), v=k..n-t))) end: a:= n-> b(2*n, n, 0): seq(a(n), n=0..14);
-
Mathematica
b[n_, k_, t_] := b[n, k, t] = If[k < 0, 0, If[Union@{n, k} == {0}, 1, Sum[ If[k == 1, 1, b[v, k - 1, 1]] StirlingS2[n, v], {v, k, n - t}]]]; a[n_] := b[2n, n, 0]; a /@ Range[0, 14] (* Jean-François Alcover, May 08 2020, after Maple *)
Formula
a(n) = A331955(2n,n).
Limit_{n->oo} (a(n)/n!^4)^(1/n) = 4/(w*(2-w)) = 6.17655460948348035823168..., where w = -LambertW(-2*exp(-2)) = -A226775. - Vaclav Kotesovec, Jul 03 2025