A332260 Triangle read by rows: T(n,k) is the number of non-isomorphic multiset partitions of weight n whose union is a k-set where each part has a different size.
1, 0, 1, 0, 1, 1, 0, 2, 3, 2, 0, 2, 5, 3, 2, 0, 3, 11, 12, 6, 3, 0, 4, 26, 39, 27, 11, 4, 0, 5, 40, 79, 67, 37, 14, 5, 0, 6, 68, 170, 184, 116, 55, 19, 6, 0, 8, 122, 407, 543, 417, 219, 91, 28, 8, 0, 10, 232, 1082, 1911, 1760, 1052, 459, 159, 42, 10
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 1; 0, 2, 3, 2; 0, 2, 5, 3, 2; 0, 3, 11, 12, 6, 3; 0, 4, 26, 39, 27, 11, 4; 0, 5, 40, 79, 67, 37, 14, 5; 0, 6, 68, 170, 184, 116, 55, 19, 6; 0, 8, 122, 407, 543, 417, 219, 91, 28, 8; ... The T(4,2) = 5 multiset partitions are: {{1,1,2,2}}, {{1,2,2,2}}, {{1},{1,2,2}}, {{1},{2,2,2}}, {{1},{1,1,2}}. These correspond with the following matrices: [2] [1] [1 1] [1 0] [1 2] [2] [3] [0 2] [0 3] [0 1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} D(p,n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=EulerT(v)); prod(j=1, #u, 1 + u[j]*x^j + O(x*x^n))/if(!#p, 1, prod(i=1, p[#p], i^v[i]*v[i]!))} M(n)={my(v=vector(n+1)); for(i=0, n, my(s=0); forpart(p=i, s+=D(p,n)); v[1+i]=Col(s)); Mat(vector(#v, i, v[i]-if(i>1, v[i-1])))} {my(T=M(10)); for(n=1, #T~, print(T[n, ][1..n]))}
Comments