A332283 Number of integer partitions of n whose first differences (assuming the last part is zero) are unimodal.
1, 1, 2, 3, 5, 7, 10, 13, 18, 24, 30, 38, 49, 59, 73, 90, 108, 129, 159, 184, 216, 258, 298, 347, 410, 466, 538, 626, 707, 807, 931, 1043, 1181, 1351, 1506, 1691, 1924, 2132, 2382, 2688, 2971, 3300, 3704, 4073, 4500, 5021, 5510, 6065, 6740, 7362, 8078
Offset: 0
Keywords
Examples
The a(1) = 1 through a(7) = 13 partitions: (1) (2) (3) (4) (5) (6) (7) (11) (21) (22) (32) (33) (43) (111) (31) (41) (42) (52) (211) (221) (51) (61) (1111) (311) (222) (322) (2111) (321) (421) (11111) (411) (511) (3111) (2221) (21111) (3211) (111111) (4111) (31111) (211111) (1111111)
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..400
- Eric Weisstein's World of Mathematics, Unimodal Sequence.
Crossrefs
Unimodal compositions are A001523.
Unimodal normal sequences appear to be A007052.
Partitions with unimodal run-lengths are A332280.
Heinz numbers of partitions with non-unimodal run-lengths are A332282.
The complement is counted by A332284.
The strict case is A332285.
Heinz numbers of partitions not in this class are A332287.
Programs
-
Mathematica
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; Table[Length[Select[IntegerPartitions[n],unimodQ[Differences[Append[#,0]]]&]],{n,0,30}]
Comments