A332285 Number of strict integer partitions of n whose first differences (assuming the last part is zero) are unimodal.
1, 1, 1, 2, 2, 3, 4, 5, 5, 8, 9, 11, 13, 15, 17, 22, 25, 29, 34, 39, 42, 53, 58, 64, 75, 84, 93, 111, 122, 134, 152, 169, 184, 212, 232, 252, 287, 315, 342, 389, 419, 458, 512, 556, 602, 672, 727, 787, 870, 940, 1012, 1124, 1209, 1303, 1431, 1540, 1655, 1821
Offset: 0
Keywords
Examples
The a(1) = 1 through a(9) = 8 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (9) (21) (31) (32) (42) (43) (53) (54) (41) (51) (52) (62) (63) (321) (61) (71) (72) (421) (521) (81) (432) (531) (621) For example, (4,3,1,0) has first differences (-1,-2,-1), which is not unimodal, so (4,3,1) is not counted under a(8).
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..500
- Eric Weisstein's World of Mathematics, Unimodal Sequence.
Crossrefs
Programs
-
Mathematica
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,unimodQ[Differences[Append[#,0]]]]&]],{n,0,30}]
Comments