A001523
Number of stacks, or planar partitions of n; also weakly unimodal compositions of n.
Original entry on oeis.org
1, 1, 2, 4, 8, 15, 27, 47, 79, 130, 209, 330, 512, 784, 1183, 1765, 2604, 3804, 5504, 7898, 11240, 15880, 22277, 31048, 43003, 59220, 81098, 110484, 149769, 202070, 271404, 362974, 483439, 641368, 847681, 1116325, 1464999, 1916184, 2498258, 3247088, 4207764
Offset: 0
For a(4)=8 we have the following stacks:
x
x x. .x
x x. .x x.. .x. ..x xx
x xx xx xxx xxx xxx xx xxxx
G.f. = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 15*x^5 + 27*x^6 + 47*x^7 + 79*x^8 + ...
From _Gus Wiseman_, Mar 04 2020: (Start)
The a(1) = 1 through a(5) = 15 unimodal compositions:
(1) (2) (3) (4) (5)
(11) (12) (13) (14)
(21) (22) (23)
(111) (31) (32)
(112) (41)
(121) (113)
(211) (122)
(1111) (131)
(221)
(311)
(1112)
(1121)
(1211)
(2111)
(11111)
(End)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see section 2.5 on page 76.
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
- F. C. Auluck, On some new types of partitions associated with generalized Ferrers graphs, Proc. Cambridge Philos. Soc. 47, (1951), 679-686, g(x).
- F. C. Auluck, On some new types of partitions associated with generalized Ferrers graphs (annotated scanned copy)
- H. Bottomley, Illustration of initial terms
- Shouvik Datta, Matthias R. Gaberdiel, Wei Li, and Cheng Peng, Twisted sectors from plane partitions, arXiv preprint arXiv:1606.07070 [hep-th], 2016. See Sect. 2.1.
- Sergi Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, arXiv:2008.05669 [math.CO], 2020.
- Sergi Elizalde and Emeric Deutsch, The degree of asymmetry of a sequence, Enum. Combinat. Applic. 2 (2022) no 1 #S2R7, U(1,z).
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, 2009; see page 46.
- Rigoberto Flórez, José L. Ramírez, and Diego Villamizar, Restricted bargraphs and unimodal compositions, J. Comb. Theory, Series A, (2024) Vol. 208, Art. No. 105934.
- R. C. Rhoades, Strongly Unimodal Sequences and Mixed Mock Modular Forms
- Alan D. Sokal, The leading root of the partial theta function, arXiv preprint arXiv:1106.1003 [math.CO], 2011.
- Eric Weisstein's World of Mathematics, Unimodal Sequence
- E. M. Wright, Stacks, III, Quart. J. Math. Oxford, 23 (1972), 153-158.
The complement is counted by
A115981.
The case covering an initial interval is
A227038.
The version whose negation is unimodal as well appears to be
A329398.
Unimodal sequences covering an initial interval are
A007052.
Non-unimodal permutations are
A059204.
Non-unimodal sequences covering an initial interval are
A328509.
Partitions with unimodal run-lengths are
A332280.
Numbers whose prime signature is not unimodal are
A332282.
Partitions whose 0-appended first differences are unimodal are
A332283.
The number of unimodal permutations of the prime indices of n is
A332288.
Compositions whose negation is unimodal are
A332578.
Compositions whose run-lengths are unimodal are
A332726.
-
m:=100;
R:=PowerSeriesRing(Integers(), m);
Coefficients(R!( 1 + (&+[ x^n*(1-x^n)/(&*[(1-x^j)^2: j in [1..n]]): n in [1..m+2]]) )); // G. C. Greubel, Apr 03 2023
-
b:= proc(n, i) option remember;
`if`(i>n, 0, `if`(irem(n, i)=0, 1, 0)+
add(b(n-i*j, i+1)*(j+1), j=0..n/i))
end:
a:= n-> `if`(n=0, 1, b(n, 1)):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 26 2014
-
max = 40; s = 1 + Sum[(-1)^(k + 1)*q^(k*(k + 1)/2), {k, 1, max}] / QPochhammer[q]^2 + O[q]^max; CoefficientList[s, q] (* Jean-François Alcover, Jan 25 2012, updated Nov 29 2015 *)
b[n_, i_] := b[n, i] = If[i>n, 0, If[Mod[n, i]==0, 1, 0] + Sum[b[n-i*j, i+1]*(j+1), {j, 0, n/i}]]; a[n_] := If[n==0, 1, b[n, 1]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 24 2015, after Alois P. Heinz *)
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],unimodQ[#]&]],{n,0,10}] (* Gus Wiseman, Mar 04 2020 *)
-
{a(n) = if( n<1, n==0, polcoeff( sum(k=1, (sqrt(1 + 8*n) - 1)\2, -(-1)^k * x^((k + k^2)/2)) / eta(x + x * O(x^n))^2 ,n))}; /* Michael Somos, Jul 22 2003 */
-
def b(n, i):
if i>n: return 0
if n%i==0: x=1
else: x=0
return x + sum([b(n - i*j, i + 1)*(j + 1) for j in range(n//i + 1)])
def a(n): return 1 if n==0 else b(n, 1) # Indranil Ghosh, Jun 09 2017, after Maple code by Alois P. Heinz
A332280
Number of integer partitions of n with unimodal run-lengths.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 55, 75, 97, 129, 166, 215, 273, 352, 439, 557, 692, 865, 1066, 1325, 1614, 1986, 2413, 2940, 3546, 4302, 5152, 6207, 7409, 8862, 10523, 12545, 14814, 17562, 20690, 24397, 28615, 33645, 39297, 46009, 53609, 62504, 72581, 84412
Offset: 0
The a(10) = 41 partitions (A = 10) are:
(A) (61111) (4321) (3211111)
(91) (55) (43111) (31111111)
(82) (541) (4222) (22222)
(811) (532) (42211) (222211)
(73) (5311) (421111) (2221111)
(721) (5221) (4111111) (22111111)
(7111) (52111) (3331) (211111111)
(64) (511111) (3322) (1111111111)
(631) (442) (331111)
(622) (4411) (32221)
(6211) (433) (322111)
Missing from this list is only (33211).
The complement is counted by
A332281.
Heinz numbers of these partitions are the complement of
A332282.
Taking 0-appended first-differences instead of run-lengths gives
A332283.
Unimodal normal sequences are
A007052.
Numbers whose unsorted prime signature is unimodal are
A332288.
Cf.
A007052,
A025065,
A072706,
A100883,
A115981,
A227038,
A317086,
A328509,
A329398,
A332284,
A332285,
A332294,
A332578,
A332579.
-
b:= proc(n, i, m, t) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1, j, t and j>=m),
j=1..min(`if`(t, [][], m), n/i))+b(n, i-1, m, t)))
end:
a:= n-> b(n$2, 0, true):
seq(a(n), n=0..65); # Alois P. Heinz, Feb 20 2020
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
Table[Length[Select[IntegerPartitions[n],unimodQ[Length/@Split[#]]&]],{n,0,30}]
(* Second program: *)
b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, j, t && j >= m], {j, 1, Min[If[t, Infinity, m], n/i]}] + b[n, i - 1, m, t]]];
a[n_] := b[n, n, 0, True];
a /@ Range[0, 65] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
A332283
Number of integer partitions of n whose first differences (assuming the last part is zero) are unimodal.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 10, 13, 18, 24, 30, 38, 49, 59, 73, 90, 108, 129, 159, 184, 216, 258, 298, 347, 410, 466, 538, 626, 707, 807, 931, 1043, 1181, 1351, 1506, 1691, 1924, 2132, 2382, 2688, 2971, 3300, 3704, 4073, 4500, 5021, 5510, 6065, 6740, 7362, 8078
Offset: 0
The a(1) = 1 through a(7) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (222) (322)
(2111) (321) (421)
(11111) (411) (511)
(3111) (2221)
(21111) (3211)
(111111) (4111)
(31111)
(211111)
(1111111)
Unimodal normal sequences appear to be
A007052.
Partitions with unimodal run-lengths are
A332280.
Heinz numbers of partitions with non-unimodal run-lengths are
A332282.
The complement is counted by
A332284.
Heinz numbers of partitions not in this class are
A332287.
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
Table[Length[Select[IntegerPartitions[n],unimodQ[Differences[Append[#,0]]]&]],{n,0,30}]
A332284
Number of integer partitions of n whose first differences (assuming the last part is zero) are not unimodal.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 2, 4, 6, 12, 18, 28, 42, 62, 86, 123, 168, 226, 306, 411, 534, 704, 908, 1165, 1492, 1898, 2384, 3011, 3758, 4673, 5799, 7168, 8792, 10804, 13192, 16053, 19505, 23633, 28497, 34367, 41283, 49470, 59188, 70675, 84113, 100048, 118689, 140533
Offset: 0
The a(6) = 1 through a(11) = 18 partitions:
(2211) (331) (431) (441) (541) (551)
(22111) (3311) (4311) (3322) (641)
(22211) (32211) (3331) (4331)
(221111) (33111) (4411) (4421)
(222111) (33211) (5411)
(2211111) (42211) (33221)
(43111) (33311)
(222211) (44111)
(322111) (52211)
(331111) (322211)
(2221111) (332111)
(22111111) (422111)
(431111)
(2222111)
(3221111)
(3311111)
(22211111)
(221111111)
The complement is counted by
A332283.
The Heinz numbers of these partitions are
A332287.
Non-unimodal permutations are
A059204.
Non-unimodal compositions are
A115981.
Non-unimodal normal sequences appear to be
A328509.
Partitions with non-unimodal run-lengths are
A332281.
Heinz numbers of partitions with non-unimodal run-lengths are
A332282.
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
Table[Length[Select[IntegerPartitions[n],!unimodQ[Differences[Append[#,0]]]&]],{n,30}]
A332287
Heinz numbers of integer partitions whose first differences (assuming the last part is zero) are not unimodal.
Original entry on oeis.org
36, 50, 70, 72, 98, 100, 108, 140, 144, 154, 180, 182, 196, 200, 216, 225, 242, 250, 252, 280, 286, 288, 294, 300, 308, 324, 338, 350, 360, 363, 364, 374, 392, 396, 400, 418, 429, 432, 441, 442, 450, 462, 468, 484, 490, 494, 500, 504, 507, 540, 550, 560, 561
Offset: 1
The sequence of terms together with their prime indices begins:
36: {1,1,2,2}
50: {1,3,3}
70: {1,3,4}
72: {1,1,1,2,2}
98: {1,4,4}
100: {1,1,3,3}
108: {1,1,2,2,2}
140: {1,1,3,4}
144: {1,1,1,1,2,2}
154: {1,4,5}
180: {1,1,2,2,3}
182: {1,4,6}
196: {1,1,4,4}
200: {1,1,1,3,3}
216: {1,1,1,2,2,2}
225: {2,2,3,3}
242: {1,5,5}
250: {1,3,3,3}
252: {1,1,2,2,4}
280: {1,1,1,3,4}
For example, the prime indices of 70 with 0 appended are (4,3,1,0), with differences (-1,-2,-1), which is not unimodal, so 70 belongs to the sequence.
The enumeration of these partitions by sum is
A332284.
Not assuming the last part is zero gives
A332725.
Non-unimodal permutations are
A059204.
Non-unimodal compositions are
A115981.
Non-unimodal normal sequences are
A328509.
Partitions with non-unimodal run-lengths are
A332281.
Cf.
A001523,
A007052,
A332280,
A332282,
A332283,
A332285,
A332286,
A332288,
A332294,
A332579,
A332639,
A332642.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
Select[Range[1000],!unimodQ[Differences[Append[Reverse[primeMS[#]],0]]]&]
A332286
Number of strict integer partitions of n whose first differences (assuming the last part is zero) are not unimodal.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 3, 5, 5, 7, 9, 12, 15, 22, 23, 31, 40, 47, 58, 72, 81, 100, 122, 144, 171, 206, 236, 280, 333, 381, 445, 522, 593, 694, 802, 914, 1054, 1214, 1376, 1577, 1803, 2040, 2324, 2646, 2973, 3373, 3817, 4287, 4838, 5453, 6096, 6857
Offset: 0
The a(8) = 1 through a(18) = 7 partitions:
(431) . (541) (641) (651) (652) (752) (762) (862)
(5421) (751) (761) (861) (871)
(5431) (851) (6531) (961)
(6431) (7431) (6532)
(6521) (7521) (6541)
(7621)
(8431)
For example, (4,3,1,0) has first differences (-1,-2,-1), which is not unimodal, so (4,3,1) is counted under a(8).
Partitions covering an initial interval are (also)
A000009.
The complement is counted by
A332285.
Non-unimodal permutations are
A059204.
Non-unimodal compositions are
A115981.
Non-unimodal normal sequences are
A328509.
Partitions with non-unimodal run-lengths are
A332281.
Normal partitions whose run-lengths are not unimodal are
A332579.
Cf.
A007052,
A011782,
A025065,
A072706,
A227038,
A332282,
A332283,
A332286,
A332287,
A332288,
A332577,
A332638,
A332642,
A332743.
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,!unimodQ[Differences[Append[#,0]]]]&]],{n,0,30}]
A332728
Number of integer partitions of n whose negated first differences (assuming the last part is zero) are unimodal.
Original entry on oeis.org
1, 1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 22, 24, 28, 34, 37, 43, 53, 56, 64, 76, 83, 93, 111, 117, 131, 153, 163, 182, 210, 225, 250, 284, 304, 332, 377, 401, 441, 497, 529, 576, 647, 687, 745, 830, 883, 955, 1062, 1127, 1216, 1339, 1422, 1532, 1684, 1779, 1914
Offset: 0
The a(1) = 1 through a(8) = 10 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (221) (51) (61) (62)
(11111) (222) (331) (71)
(321) (421) (332)
(111111) (2221) (431)
(1111111) (521)
(2222)
(11111111)
The non-negated version is
A332283.
The non-negated complement is counted by
A332284.
The case of run-lengths (instead of differences) is
A332638.
The complement is counted by
A332744.
The Heinz numbers of partitions not in this class are
A332287.
Compositions whose negation is unimodal are
A332578.
Compositions whose run-lengths are unimodal are
A332726.
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
Table[Length[Select[IntegerPartitions[n],unimodQ[-Differences[Append[#,0]]]&]],{n,0,30}]
A332744
Number of integer partitions of n whose negated first differences (assuming the last part is zero) are not unimodal.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 4, 7, 12, 17, 28, 39, 55, 77, 107, 142, 194, 254, 332, 434, 563, 716, 919, 1162, 1464, 1841, 2305, 2857, 3555, 4383, 5394, 6617, 8099, 9859, 12006, 14551, 17600, 21236, 25574, 30688, 36809, 44007, 52527, 62574, 74430, 88304, 104675, 123799
Offset: 0
The a(4) = 1 through a(9) = 17 partitions:
(211) (311) (411) (322) (422) (522)
(2111) (2211) (511) (611) (711)
(3111) (3211) (3221) (3222)
(21111) (4111) (3311) (4221)
(22111) (4211) (4311)
(31111) (5111) (5211)
(211111) (22211) (6111)
(32111) (32211)
(41111) (33111)
(221111) (42111)
(311111) (51111)
(2111111) (222111)
(321111)
(411111)
(2211111)
(3111111)
(21111111)
For example, the partition y = (4,2,1,1,1) has negated 0-appended first differences (2,1,0,0,1), which is not unimodal, so y is counted under a(9).
The complement is counted by
A332728.
The non-negated version is
A332284.
The case of run-lengths (instead of differences) is
A332639.
The Heinz numbers of these partitions are
A332832.
Non-unimodal compositions are
A115981.
Heinz numbers of partitions with non-unimodal run-lengths are
A332282.
Partitions whose 0-appended first differences are unimodal are
A332283.
Compositions whose negation is unimodal are
A332578.
Numbers whose negated prime signature is not unimodal are
A332642.
Compositions whose negation is not unimodal are
A332669.
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
Table[Length[Select[IntegerPartitions[n],!unimodQ[-Differences[Append[#,0]]]&]],{n,0,30}]
A072707
Number of non-unimodal compositions of n into distinct terms.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 2, 2, 4, 6, 24, 26, 46, 64, 100, 224, 276, 416, 590, 850, 1144, 2214, 2644, 3938, 5282, 7504, 9776, 13704, 21984, 27632, 38426, 51562, 69844, 91950, 123504, 159658, 246830, 303400, 416068, 540480, 730268, 933176, 1248110
Offset: 0
a(6)=2 since 6 can be written as 2+1+3 or 3+1+2.
From _Gus Wiseman_, Mar 05 2020: (Start)
The a(6) = 2 through a(9) = 6 strict compositions:
(2,1,3) (2,1,4) (2,1,5) (2,1,6)
(3,1,2) (4,1,2) (3,1,4) (3,1,5)
(4,1,3) (3,2,4)
(5,1,2) (4,2,3)
(5,1,3)
(6,1,2)
(End)
The complement is counted by
A072706.
The case where the negation is not unimodal either is
A332874.
Non-unimodal permutations are
A059204.
A triangle for strict unimodal compositions is
A072705.
Non-unimodal sequences covering an initial interval are
A328509.
Numbers whose prime signature is not unimodal are
A332282.
Strict partitions whose 0-appended differences are not unimodal are
A332286.
Compositions whose negation is unimodal are
A332578.
Compositions whose negation is not unimodal are
A332669.
Non-unimodal compositions covering an initial interval are
A332743.
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&!unimodQ[#]&]],{n,0,16}] (* Gus Wiseman, Mar 05 2020 *)
A333147
Number of compositions of n that are either strictly increasing or strictly decreasing.
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 7, 9, 11, 15, 19, 23, 29, 35, 43, 53, 63, 75, 91, 107, 127, 151, 177, 207, 243, 283, 329, 383, 443, 511, 591, 679, 779, 895, 1023, 1169, 1335, 1519, 1727, 1963, 2225, 2519, 2851, 3219, 3631, 4095, 4607, 5179, 5819, 6527, 7315, 8193, 9163
Offset: 0
The a(1) = 1 through a(9) = 15 compositions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)
(2,1) (3,1) (2,3) (2,4) (2,5) (2,6) (2,7)
(3,2) (4,2) (3,4) (3,5) (3,6)
(4,1) (5,1) (4,3) (5,3) (4,5)
(1,2,3) (5,2) (6,2) (5,4)
(3,2,1) (6,1) (7,1) (6,3)
(1,2,4) (1,2,5) (7,2)
(4,2,1) (1,3,4) (8,1)
(4,3,1) (1,2,6)
(5,2,1) (1,3,5)
(2,3,4)
(4,3,2)
(5,3,1)
(6,2,1)
The non-strict version appears to be
A329398.
Partitions with incr. or decr. run-lengths are
A332745 (strict:
A333190).
Compositions with incr. or decr. run-lengths are
A332835 (strict:
A333191).
Cf.
A059204,
A072705,
A072707,
A115981,
A332285,
A332578,
A332746,
A332831,
A332833,
A332874,
A333150.
Showing 1-10 of 13 results.
Comments