A100506 Bisection of A001523.
1, 4, 15, 47, 130, 330, 784, 1765, 3804, 7898, 15880, 31048, 59220, 110484, 202070, 362974, 641368, 1116325, 1916184, 3247088, 5436972, 9002752, 14752316, 23938188, 38487496, 61344055, 96974176, 152110204, 236837795, 366177506, 562373990, 858193804, 1301654610
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
Crossrefs
Cf. A001523.
Programs
-
Magma
m:=200; R
:=PowerSeriesRing(Integers(), m); b:= Coefficients(R!( 1 + (&+[ x^n*(1-x^n)/(&*[(1-x^j)^2: j in [1..n]]): n in [1..m+2]]) )); A100506:= func< n | b[2*n+2] >; [A100506(n): n in [0..80]]; // G. C. Greubel, Apr 03 2023 -
Maple
seq(coeff(convert(series(add(-(-1)^k*x^(k*(k+1)/2),k=1..100)/(mul(1-x^k,k=1..100))^2,x,100),polynom),x,2*n+1),n=0..45); # (C. Ronaldo) # second Maple program: b:= proc(n, i) option remember; `if`(i>n, 0, `if`(irem(n, i)=0, 1, 0)+ add(b(n-i*j, i+1)*(j+1), j=0..n/i)) end: a:= n-> `if`(n=0, 1, b(2*n+1, 1)): seq(a(n), n=0..60); # Alois P. Heinz, Mar 26 2014
-
Mathematica
b[n_, i_]:= b[n, i]= If[i>n, 0, If[Mod[n, i]==0, 1, 0] + Sum[b[n-i*j, i + 1]*(j+1), {j, 0, n/i}]]; a[n_]:= If[n==0, 1, b[2*n+1, 1]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jun 18 2018, after Alois P. Heinz *)
-
SageMath
@CachedFunction def b(n, k): # Indranil Ghosh's code of A001523 if k>n: return 0 if n%k==0: x=1 else: x=0 return x + sum(b(n-k*j, k+1)*(j+1) for j in range(n//k + 1)) def A100506(n): return 1 if n==0 else b(2*n+1, 1) [A100506(n) for n in range(41)] # G. C. Greubel, Apr 03 2023
Extensions
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005
Comments