cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 48 results. Next

A000712 Generating function = Product_{m>=1} 1/(1 - x^m)^2; a(n) = number of partitions of n into parts of 2 kinds.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 65, 110, 185, 300, 481, 752, 1165, 1770, 2665, 3956, 5822, 8470, 12230, 17490, 24842, 35002, 49010, 68150, 94235, 129512, 177087, 240840, 326015, 439190, 589128, 786814, 1046705, 1386930, 1831065, 2408658, 3157789, 4126070, 5374390
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is also the number of conjugacy classes in the automorphism group of the n-dimensional hypercube. This automorphism group is the wreath product of the cyclic group C_2 and the symmetric group S_n, its order is in sequence A000165. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Nov 04 2001
Also, number of noncongruent matrices in GL_n(Z): each Jordan block can only have +1 or -1 on the diagonal. - Michele Dondi (blazar(AT)lcm.mi.infn.it), Jun 15 2004
a(n) = Sum (k(1)+1)*(k(2)+1)*...*(k(n)+1), where the sum is taken over all (k(1),k(2),...,k(n)) such that k(1)+2*k(2)+...+n*k(n) = n, k(i)>=0, i=1..n, cf. A104510, A077285. - Vladeta Jovovic, Apr 21 2005
Convolution of partition numbers (A000041) with itself. - Graeme McRae, Jun 07 2006
Number of one-to-one partial endofunctions on n unlabeled points. Connected components are either cycles or "lines", hence two for each size. - Franklin T. Adams-Watters, Dec 28 2006
Equals A000716: (1, 3, 9, 22, 561, 108, ...) convolved with A010815. A000716 = the number of partitions of n into parts of 3 kinds = the Euler transform of [3,3,3,...]. - Gary W. Adamson, Oct 26 2008
Paraphrasing the g.f.: 1 + 2x + 5x^2 + ... = s(x) * s(x^2) * s(x^3) * s(x^4) * ...; where s(x) = 1 + 2x + 3x^2 + 4x^3 + ... is (up to a factor x) the g.f. of A000027. - Gary W. Adamson, Apr 01 2010
Also equals number of partitions of 2n in which the odd parts appear as many times in even as in odd positions. - Wouter Meeussen, Apr 17 2013
Also number of ordered pairs (R,S) with R a partition of r, S a partition of s, and r+s=n; see example. This corresponds to the formula a(n) = sum(r+s==n, p(r)*p(s) ) = Sum_{k=0..n} p(k)*p(n-k). - Joerg Arndt, Apr 29 2013
Also the number of all multi-graphs with exactly n-edges and with vertex degrees 1 or 2. - Ebrahim Ghorbani, Dec 02 2013
If one decomposes k-permutations into cycles and so-called paths, the number of different type of decompositions equals to a(k); see the paper by Chen, Ghorbani, and Wong. - Ebrahim Ghorbani, Dec 02 2013
Let T(n,k) be the number of partitions of n having parts 1 through k of two kinds, with T(n,0) = A000041(n), the number of partitions of n. Then a(n) = T(n,0) + T(n-1,1) + T(n-2,2) + T(n-3,3) + ... - Gregory L. Simay, May 18 2019
Also the number of orbits of projections in the partition monoid P_n under conjugation by permutations. - James East, Jul 21 2020

Examples

			Assume there are integers of two kinds: k and k'; then a(3) = 10 since 3 has the following partitions into parts of two kinds: 111, 111', 11'1', 1'1'1', 12, 1'2, 12', 1'2', 3, and 3'. - _W. Edwin Clark_, Jun 24 2011
There are a(4)=20 partitions of 4 into 2 sorts of parts. Here p:s stands for "part p of sort s":
01:  [ 1:0  1:0  1:0  1:0  ]
02:  [ 1:0  1:0  1:0  1:1  ]
03:  [ 1:0  1:0  1:1  1:1  ]
04:  [ 1:0  1:1  1:1  1:1  ]
05:  [ 1:1  1:1  1:1  1:1  ]
06:  [ 2:0  1:0  1:0  ]
07:  [ 2:0  1:0  1:1  ]
08:  [ 2:0  1:1  1:1  ]
09:  [ 2:0  2:0  ]
10:  [ 2:0  2:1  ]
11:  [ 2:1  1:0  1:0  ]
12:  [ 2:1  1:0  1:1  ]
13:  [ 2:1  1:1  1:1  ]
14:  [ 2:1  2:1  ]
15:  [ 3:0  1:0  ]
16:  [ 3:0  1:1  ]
17:  [ 3:1  1:0  ]
18:  [ 3:1  1:1  ]
19:  [ 4:0  ]
20:  [ 4:1  ]
- _Joerg Arndt_, Apr 28 2013
The a(4)=20 ordered pairs (R,S) of partitions for n=4 are
  ([4], [])
  ([3, 1], [])
  ([2, 2], [])
  ([2, 1, 1], [])
  ([1, 1, 1, 1], [])
  ([3], [1])
  ([2, 1], [1])
  ([1, 1, 1], [1])
  ([2], [2])
  ([2], [1, 1])
  ([1, 1], [2])
  ([1, 1], [1, 1])
  ([1], [3])
  ([1], [2, 1])
  ([1], [1, 1, 1])
  ([], [4])
  ([], [3, 1])
  ([], [2, 2])
  ([], [2, 1, 1])
  ([], [1, 1, 1, 1])
This list was created with the Sage command
   for P in PartitionTuples(2,4) : print P;
- _Joerg Arndt_, Apr 29 2013
G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 110*x^7 + 185*x^8 + ...
		

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see Proposition 2.5.2 on page 78.

Crossrefs

Cf. A000165, A000041, A002107 (reciprocal of g.f.).
Cf. A002720.
Cf. A000716, A010815. - Gary W. Adamson, Oct 26 2008
Row sums of A175012. - Gary W. Adamson, Apr 03 2010
Column k=2 of A144064.

Programs

  • Haskell
    a000712 = p a008619_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Nov 06 2012
    
  • Julia
    # DedekindEta is defined in A000594.
    A000712List(len) = DedekindEta(len, -2)
    A000712List(39) |> println # Peter Luschny, Mar 09 2018
    
  • Maple
    with(combinat): A000712:= n-> add(numbpart(k)*numbpart(n-k), k=0..n): seq(A000712(n), n=0..40); # Emeric Deutsch
  • Mathematica
    CoefficientList[ Series[ Product[1/(1 - x^n)^2, {n, 40}], {x, 0, 37}], x]; (* Robert G. Wilson v, Feb 03 2005 *)
    Table[Count[Partitions[2*n], q_ /; Tr[(-1)^Mod[Flatten[Position[q, ?OddQ]], 2]] === 0], {n, 12}] (* _Wouter Meeussen, Apr 17 2013 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^-2, {x, 0, n}]; (* Michael Somos, Oct 12 2015 *)
    Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@n], {n, 0, 15}] (* Robert Price, Jun 15 2020 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / eta(x + A)^2, n))}; /* Michael Somos, Nov 14 2002 */
    
  • PARI
    Vec(1/eta('x+O('x^66))^2) /* Joerg Arndt, Jun 25 2011 */
    
  • Python
    from sympy import npartitions
    def A000712(n): return (sum(npartitions(k)*npartitions(n-k) for k in range(n+1>>1))<<1) + (0 if n&1 else npartitions(n>>1)**2) # Chai Wah Wu, Sep 25 2023
  • SageMath
    # uses[EulerTransform from A166861]
    a = BinaryRecurrenceSequence(0, 1, 2, 2)
    b = EulerTransform(a)
    print([b(n) for n in range(40)]) # Peter Luschny, Nov 11 2020
    

Formula

a(n) = Sum_{k=0..n} p(k)*p(n-k), where p(n) = A000041(n).
Euler transform of period 1 sequence [ 2, 2, 2, ...]. - Michael Somos, Jul 22 2003
a(n) = A006330(n) + A001523(n). - Michael Somos, Jul 22 2003
a(0) = 1, a(n) = (1/n)*Sum_{k=0..n-1} 2*a(k)*sigma_1(n-k). - Joerg Arndt, Feb 05 2011
a(n) ~ (1/12)*3^(1/4)*n^(-5/4)*exp((2/3)*sqrt(3)*Pi*sqrt(n)). - Joe Keane (jgk(AT)jgk.org), Sep 13 2002
G.f.: Product_{i>=1} (1 + x^i)^(2*A001511(i)) (see A000041). - Jon Perry, Jun 06 2004
More precise asymptotics: a(n) ~ exp(2*Pi*sqrt(n/3)) / (4*3^(3/4)*n^(5/4)) * (1 - (Pi/(12*sqrt(3)) + 15*sqrt(3)/(16*Pi)) / sqrt(n) + (Pi^2/864 + 315/(512*Pi^2) + 35/192)/n). - Vaclav Kotesovec, Jan 22 2017
From Peter Bala, Jan 26 2016: (Start)
a(n) is odd iff n = 2*m and p(m) is odd.
a(n) = (2/n)*Sum_{k = 0..n} k*p(k)*p(n-k) for n >= 1.
Conjecture: : a(n) is divisible by 5 when n is congruent to 2, 3 or 4 modulo 5. (End)
Conjecture is proved in Hammond and Lewis. - Yen-chi R. Lin, Jun 24 2024
G.f.: exp(2*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018
With the convention that a(n) = 0 for n < 0 we have the recurrence a(n) = g(n) + Sum_{k >= 1} (-1)^(k+1)*(2*k + 1)*a(n - k*(k + 1)/2), where g(n) = (-1)^m if n = m*(3*m - 1)/2 is a generalized pentagonal number (A001318) else g(n) = 0. For example, n = 7 = -2*(3*(-2) - 1)/2 is a pentagonal number, g(7) = 1, and so a(7) = 1 + 3*a(6) - 5*a(4) + 7*a(1) = 1 + 195 - 100 + 14 = 110. - Peter Bala, Apr 06 2022
a(n) = p(n/2) + Sum_{k \in Z, k != 0} (-1)^{k-1} a(n-k^2), here p(n) = A000041(n) and p(x) = 0 when x is not an integer. - Yen-chi R. Lin, Jun 24 2024
Conjecture: a(25*n + 23) is divisible by 25 (checked for n < 400). - Peter Bala, Jan 13 2025

Extensions

More terms from Joe Keane (jgk(AT)jgk.org), Nov 17 2001
More terms from Michele Dondi (blazar(AT)lcm.mi.infn.it), Jun 15 2004
Definition rewritten by N. J. A. Sloane, Apr 02 2022

A103919 Triangle of numbers of partitions of n with total number of odd parts equal to k from {0,...,n}.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 2, 0, 1, 0, 4, 0, 2, 0, 1, 3, 0, 5, 0, 2, 0, 1, 0, 7, 0, 5, 0, 2, 0, 1, 5, 0, 9, 0, 5, 0, 2, 0, 1, 0, 12, 0, 10, 0, 5, 0, 2, 0, 1, 7, 0, 17, 0, 10, 0, 5, 0, 2, 0, 1, 0, 19, 0, 19, 0, 10, 0, 5, 0, 2, 0, 1, 11, 0, 28, 0, 20, 0, 10, 0, 5, 0, 2, 0, 1, 0, 30, 0, 33, 0, 20, 0, 10, 0, 5, 0, 2, 0, 1
Offset: 0

Views

Author

Wolfdieter Lang, Mar 24 2005

Keywords

Comments

The partition (0) of n=0 is included. For n>0 no part 0 appears.
The first (k=0) column gives the number of partitions without odd parts, i.e., those with even parts only. See A035363.
Without the alternating zeros this becomes a triangle with columns given by the rows of the S_n(m) table shown in the Riordan reference.
From Gregory L. Simay, Oct 31 2015: (Start)
T(2n+k,k) = the number of partitions of n with parts 1..k of two kinds. If n<=k, then T(2n+k) = A000712(n), the number of partitions of n with parts of two kinds.
T(2n+k) = the convolution of A000041(n) and the number of partitions of n+k having exactly k parts.
T(2n+k) = d(n,k) where d(n,0) = p(n) and d(n,k) = d(n,k-1) + d(n-k,k-1) + d(n-2k,k-1) + ... (End)
From Emeric Deutsch, Oct 04 2016: (Start)
T(n,k) = number of partitions (p1 >= p2 >= p3 >= ...) of n having alternating sum p1 - p2 + p3 - ... = k. Example: T(5,3) = 2 because there are two partitions (3,1,1) and (4,1) of 5 with alternating sum 3.
The equidistribution of the partition statistics "alternating sum" and "total number of odd parts" follows by conjugation. (End)

Examples

			The triangle a(n,k) begins:
n\k 0  1  2  3  4  5  6  7  8  9 10
0:  1
1:  0  1
2:  1  0  1
3:  0  2  0  1
4:  2  0  2  0  1
5:  0  4  0  2  0  1
6:  3  0  5  0  2  0  1
7:  0  7  0  5  0  2  0  1
8:  5  0  9  0  5  0  2  0  1
9:  0 12  0 10  0  5  0  2  0  1
10: 7  0 17  0 10  0  5  0  2  0  1
... Reformatted - _Wolfdieter Lang_, Apr 28 2013
a(0,0) = 1 because n=0 has no odd part, only one even part, 0, by definition. a(5,3) = 2 because there are two partitions (1,1,3) and (1,1,1,2) of 5 with exactly 3 odd parts.
From _Gregory L. Simay_, Oct 31 2015: (Start)
T(10,4) = T(2*3+4,4) = d(3,4) = A000712(3) = 10.
T(10,2) = T(2*4+2,2) = d(4,2) = d(4,1)+d(2,1)+d(0,1) = d(4,0)+d(3,0)+d(2,0)+d(1,0)+d(0,0) + d(2,0)+d(1,0)+d(0,0) + d(0,0) = convolution sum p(4)+p(3)+2*p(2)+2*p(1)+3*p(0) = 5+3+2*2+2*1+3*1 = 17.
T(9,1) = T(8,0) + T(7,1) = 5 + 7 = 12.
(End)
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.

Crossrefs

Row sums gives A000041 (partition numbers). Columns: k=0: A035363 (with zero entries) A000041 (without zero entries), k=1: A000070, k=2: A000097, k=3: A000098, k=4: A000710, 3k>=n: A000712.
Cf. A066897.
The strict version (without zeros) is A152146 interleaved with A152157.
The rows (without zeros) are A239830 interleaved with A239829.
The reverse version (without zeros) is the right half of A344612.
Removing all zeros gives A344651.
The strict reverse version (without zeros) is the right half of A344739.

Programs

  • Maple
    g:=1/product((1-t*x^(2*j-1))*(1-x^(2*j)),j=1..20): gser:=simplify(series(g,x=0,22)): P[0]:=1: for n from 1 to 18 do P[n]:=coeff(gser,x^n) od: for n from 0 to 18 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form # Emeric Deutsch, Feb 17 2006
  • Mathematica
    T[n_, k_] := T[n, k] = Which[nJean-François Alcover, Mar 05 2014, after Paul D. Hanna *)
    Table[Length[Select[IntegerPartitions[n],Count[#,?OddQ]==k&]],{n,0,15},{k,0,n}] (* _Gus Wiseman, Jun 20 2021 *)
  • PARI
    {T(n, k)=if(n>=k, if(n==k, 1, if((n-k+1)%2==0, 0, if(k==0, sum(m=0, n, T(n\2, m)), T(n-1, k-1)+T(n-2*k, k)))))}
    for(n=0, 20, for(k=0, n, print1(T(n, k), ", ")); print(""))
    \\ Paul D. Hanna, Apr 27 2013

Formula

a(n, k) = number of partitions of n>=0, which have exactly k odd parts (and possibly even parts) for k from {0, ..., n}.
Sum_{k=0..n} k*T(n,k) = A066897(n). - Emeric Deutsch, Feb 17 2006
G.f.: G(t,x) = 1/Product_{j>=1} (1-t*x^(2*j-1))*(1-x^(2*j)). - Emeric Deutsch, Feb 17 2006
G.f. T(2n+k,k) = g.f. d(n,k) = (1/Product_{j=1..k} (1-x^j)) * g.f. p(n). - Gregory L. Simay, Oct 31 2015
T(n,k) = T(n-1,k-1) + T(n-2k,k). - Gregory L. Simay, Nov 01 2015

A001523 Number of stacks, or planar partitions of n; also weakly unimodal compositions of n.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 27, 47, 79, 130, 209, 330, 512, 784, 1183, 1765, 2604, 3804, 5504, 7898, 11240, 15880, 22277, 31048, 43003, 59220, 81098, 110484, 149769, 202070, 271404, 362974, 483439, 641368, 847681, 1116325, 1464999, 1916184, 2498258, 3247088, 4207764
Offset: 0

Views

Author

Keywords

Comments

a(n) counts stacks of integer-length boards of total length n where no board overhangs the board underneath.
Number of graphical partitions on 2n nodes that contain a 1. E.g. a(3)=4 and so there are 4 graphical partitions of 6 that contain a 1, namely (111111), (21111), (2211) and (3111). Only (222) fails. - Jon Perry, Jul 25 2003
It would seem from Stanley that he regards a(0)=0 for this sequence and A001522. - Michael Somos, Feb 22 2015
In the article by Auluck is a typo in the formula (24), 2*Pi is missing in an exponent on the left side of the equation for Q(n). The correct term is exp(2*Pi*sqrt(n/3)), not just exp(sqrt(n/3)). - Vaclav Kotesovec, Jun 22 2015

Examples

			For a(4)=8 we have the following stacks:
x
x x. .x
x x. .x x.. .x. ..x xx
x xx xx xxx xxx xxx xx xxxx
G.f. = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 15*x^5 + 27*x^6 + 47*x^7 + 79*x^8 + ...
From _Gus Wiseman_, Mar 04 2020: (Start)
The a(1) = 1 through a(5) = 15 unimodal compositions:
  (1)  (2)   (3)    (4)     (5)
       (11)  (12)   (13)    (14)
             (21)   (22)    (23)
             (111)  (31)    (32)
                    (112)   (41)
                    (121)   (113)
                    (211)   (122)
                    (1111)  (131)
                            (221)
                            (311)
                            (1112)
                            (1121)
                            (1211)
                            (2111)
                            (11111)
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see section 2.5 on page 76.

Crossrefs

Cf. A000569. Bisections give A100505, A100506.
Row sums of A247255.
Row sums of A072704.
The strict case is A072706.
The complement is counted by A115981.
The case covering an initial interval is A227038.
The version whose negation is unimodal as well appears to be A329398.
Unimodal sequences covering an initial interval are A007052.
Non-unimodal permutations are A059204.
Non-unimodal sequences covering an initial interval are A328509.
Partitions with unimodal run-lengths are A332280.
Numbers whose prime signature is not unimodal are A332282.
Partitions whose 0-appended first differences are unimodal are A332283.
The number of unimodal permutations of the prime indices of n is A332288.
Compositions whose negation is unimodal are A332578.
Compositions whose run-lengths are unimodal are A332726.

Programs

  • Magma
    m:=100;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( 1 + (&+[ x^n*(1-x^n)/(&*[(1-x^j)^2: j in [1..n]]): n in [1..m+2]]) )); // G. C. Greubel, Apr 03 2023
  • Maple
    b:= proc(n, i) option remember;
          `if`(i>n, 0, `if`(irem(n, i)=0, 1, 0)+
          add(b(n-i*j, i+1)*(j+1), j=0..n/i))
        end:
    a:= n-> `if`(n=0, 1, b(n, 1)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 26 2014
  • Mathematica
    max = 40; s = 1 + Sum[(-1)^(k + 1)*q^(k*(k + 1)/2), {k, 1, max}] / QPochhammer[q]^2 + O[q]^max; CoefficientList[s, q] (* Jean-François Alcover, Jan 25 2012, updated Nov 29 2015 *)
    b[n_, i_] := b[n, i] = If[i>n, 0, If[Mod[n, i]==0, 1, 0] + Sum[b[n-i*j, i+1]*(j+1), {j, 0, n/i}]]; a[n_] := If[n==0, 1, b[n, 1]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 24 2015, after Alois P. Heinz *)
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],unimodQ[#]&]],{n,0,10}] (* Gus Wiseman, Mar 04 2020 *)
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( sum(k=1, (sqrt(1 + 8*n) - 1)\2, -(-1)^k * x^((k + k^2)/2)) / eta(x + x * O(x^n))^2 ,n))}; /* Michael Somos, Jul 22 2003 */
    
  • Python
    def b(n, i):
        if i>n: return 0
        if n%i==0: x=1
        else: x=0
        return x + sum([b(n - i*j, i + 1)*(j + 1) for j in range(n//i + 1)])
    def a(n): return 1 if n==0 else b(n, 1) # Indranil Ghosh, Jun 09 2017, after Maple code by Alois P. Heinz
    

Formula

a(n) = Sum_{k=1..n} f(k, n-k), where f(n, k) (= A054250) = 1 if k = 0; Sum_{j=1..min(n, k)} (n-j+1)*f(j, k-j) if k > 0. - David W. Wilson, May 05 2000
a(n) = Sum_{k} A059623(n, k) for n > 0. - Henry Bottomley, Feb 01 2001
A006330(n) + a(n) = A000712(n). - Michael Somos, Jul 22 2003
G.f.: 1 + (Sum_{k>0} -(-1)^k x^(k(k+1)/2))/(Product_{k>0} (1-x^k))^2. - Michael Somos, Jul 22 2003
G.f.: 1 + Sum_{n>=1} (x^n / ( ( Product_{k=1..n-1} (1 - x^k)^2 ) * (1-x^n) ) ). - Joerg Arndt, Oct 01 2012
a(n) ~ exp(2*Pi*sqrt(n/3)) / (8 * 3^(3/4) * n^(5/4)) [Auluck, 1951]. - Vaclav Kotesovec, Jun 22 2015
a(n) + A115981(n) = 2^(n - 1). - Gus Wiseman, Mar 04 2020

Extensions

More terms from David W. Wilson, May 05 2000
Definition corrected by Wolfdieter Lang, Dec 05 2018

A344612 Triangle read by rows where T(n,k) is the number of integer partitions of n with reverse-alternating sum k ranging from -n to n in steps of 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 2, 3, 3, 1, 1, 0, 1, 2, 4, 3, 3, 1, 1, 0, 1, 2, 4, 5, 5, 3, 1, 1, 0, 1, 2, 4, 7, 5, 6, 3, 1, 1, 0, 1, 2, 4, 8, 7, 9, 6, 3, 1, 1, 0, 1, 2, 4, 8, 12, 7, 11, 6, 3, 1, 1, 0, 1, 2, 4, 8, 14, 11, 14, 12, 6, 3, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jun 01 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is also (-1)^(k-1) times the sum of the even-indexed parts minus the sum of the odd-indexed parts.
Also the number of reversed integer partitions of n with alternating sum k ranging from -n to n in steps of 2.
Also the number of integer partitions of n with (-1)^(m-1) * b = k where m is the greatest part and b is the number of odd parts, with k ranging from -n to n in steps of 2.

Examples

			Triangle begins:
                                1
                              0   1
                            0   1   1
                          0   1   1   1
                        0   1   2   1   1
                      0   1   2   2   1   1
                    0   1   2   3   3   1   1
                  0   1   2   4   3   3   1   1
                0   1   2   4   5   5   3   1   1
              0   1   2   4   7   5   6   3   1   1
            0   1   2   4   8   7   9   6   3   1   1
          0   1   2   4   8  12   7  11   6   3   1   1
        0   1   2   4   8  14  11  14  12   6   3   1   1
      0   1   2   4   8  15  19  11  18  12   6   3   1   1
    0   1   2   4   8  15  24  15  23  20  12   6   3   1   1
  0   1   2   4   8  15  26  30  15  31  21  12   6   3   1   1
For example, row n = 7 counts the following partitions:
  (61)  (52)    (43)      (331)      (322)    (511)  (7)
        (4111)  (2221)    (22111)    (421)
                (3211)    (1111111)  (31111)
                (211111)
Row n = 9 counts the following partitions:
  81  72    63      54        441        333      522    711  9
      6111  4221    3222      22221      432      621
            5211    3321      33111      531      51111
            411111  4311      2211111    32211
                    222111    111111111  42111
                    321111               3111111
                    21111111
		

Crossrefs

Row sums are A000041.
The midline k = n/2 is also A000041.
The right half (i.e., k >= 0) for even n is A344610.
The rows appear to converge to A344611 (from left) and A006330 (from right).
The non-reversed version is A344651 (A239830 interleaved with A239829).
The strict version is A344739.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344618 gives reverse-alternating sums of standard compositions.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],sats[#]==k&]],{n,0,15},{k,-n,n,2}]
  • PARI
    row(n)={my(v=vector(n+1)); forpart(p=n, my(s=-sum(i=1, #p, p[i]*(-1)^i)); v[(s+n)/2+1]++); v} \\ Andrew Howroyd, Jan 06 2024

A000097 Number of partitions of n if there are two kinds of 1's and two kinds of 2's.

Original entry on oeis.org

1, 2, 5, 9, 17, 28, 47, 73, 114, 170, 253, 365, 525, 738, 1033, 1422, 1948, 2634, 3545, 4721, 6259, 8227, 10767, 13990, 18105, 23286, 29837, 38028, 48297, 61053, 76926, 96524, 120746, 150487, 187019, 231643, 286152, 352413, 432937, 530383, 648245
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of 2*n with exactly 2 odd parts (offset 1). - Vladeta Jovovic, Jan 12 2005
Also number of transitions from one partition of n+2 to another, where a transition consists of replacing any two parts with their sum. Remove all 1' and 2' from the partition, replacing them with ((number of 2') + 1) and ((number of 1') + (number of 2') + 1); these are the two parts being summed. Number of partitions of n into parts of 2 kinds with at most 2 parts of the second kind, or of n+2 into parts of 2 kinds with exactly 2 parts of the second kind. - Franklin T. Adams-Watters, Mar 20 2006
From Christian Gutschwager (gutschwager(AT)math.uni-hannover.de), Feb 10 2010: (Start)
a(n) is also the number of pairs of partitions of n+2 which differ by only one box (for bijection see the first Gutschwager link).
a(n) is also the number of partitions of n with two parts marked.
a(n) is also the number of partitions of n+1 with two different parts marked. (End)
Convolution of A000041 and A008619. - Vaclav Kotesovec, Aug 18 2015
a(n) = P(/2,n), a particular case of P(/k,n) defined as follows: P(/0,n) = A000041(n) and P(/k,n) = P(/k-1, n) + P(/k-1,n-k) + P(/k-1, n-2k) + ... Also, P(/k,n) = the convolution of A000041 and the partitions of n with exactly k parts, and g.f. P(/k,n) = (g.f. for P(n)) * 1/(1-x)...(1-x^k). - Gregory L. Simay, Mar 22 2018
a(n) is also the sum of binomial(D(p),2) in partitions p of (n+3), where D(p)= number of different sizes of parts in p. - Emily Anible, Apr 03 2018
Also partitions of 2*(n+1) with alternating sum 2. Also partitions of 2*(n+1) with reverse-alternating sum -2 or 2. - Gus Wiseman, Jun 21 2021
Define the distance graph of the partitions of n using the distance function in A366156 as follows: two vertices (partitions) share an edge if and only if the distance between the vertices is 2. Then a(n) is the number of edges in the distance graph of the partitions of n. - Clark Kimberling, Oct 12 2023

Examples

			a(3) = 9 because we have 3, 2+1, 2+1', 2'+1, 2'+1', 1+1+1, 1+1+1', 1+1'+1' and 1'+1'+1'.
From _Gus Wiseman_, Jun 22 2021: (Start)
The a(0) = 1 through a(4) = 9 partitions of 2*(n+1) with exactly 2 odd parts:
  (1,1)  (3,1)    (3,3)      (5,3)
         (2,1,1)  (5,1)      (7,1)
                  (3,2,1)    (3,3,2)
                  (4,1,1)    (4,3,1)
                  (2,2,1,1)  (5,2,1)
                             (6,1,1)
                             (3,2,2,1)
                             (4,2,1,1)
                             (2,2,2,1,1)
The a(0) = 1 through a(4) = 9 partitions of 2*(n+1) with alternating sum 2:
  (2)  (3,1)    (4,2)        (5,3)
       (2,1,1)  (2,2,2)      (3,3,2)
                (3,2,1)      (4,3,1)
                (3,1,1,1)    (3,2,2,1)
                (2,1,1,1,1)  (4,2,1,1)
                             (2,2,2,1,1)
                             (3,2,1,1,1)
                             (3,1,1,1,1,1)
                             (2,1,1,1,1,1,1)
(End)
		

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences are in A024786.
Third column of Riordan triangle A008951 and of triangle A103923.
The case of reverse-alternating sum 1 or alternating sum 0 is A000041.
The case of reverse-alternating sum -1 or alternating sum 1 is A000070.
The normal case appears to be A004526 or A065033.
The strict case is A096914.
The case of reverse-alternating sum 2 is A120452.
The case of reverse-alternating sum -2 is A344741.
A001700 counts compositions with alternating sum 2.
A035363 counts partitions into even parts.
A058696 counts partitions of 2n.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A124754 gives alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
Shift of A093695.

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n->`if`(n<3,2,1)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    CoefficientList[Series[1/((1 - x) (1 - x^2) Product[1 - x^k, {k, 1, 100}]), {x, 0, 100}], x] (* Ben Branman, Mar 07 2012 *)
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a = etr[If[# < 3, 2, 1]&]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *)
    (1/((1 - x) (1 - x^2) QPochhammer[x]) + O[x]^50)[[3]] (* Vladimir Reshetnikov, Nov 22 2016 *)
    Table[Length@IntegerPartitions[n,All,Join[{1,2},Range[n]]],{n,0,15}] (* Robert Price, Jul 28 2020 and Jun 21 2021 *)
    T[n_, 0] := PartitionsP[n];
    T[n_, m_] /; (n >= m (m + 1)/2) := T[n, m] = T[n - m, m - 1] + T[n - m, m];
    T[, ] = 0;
    a[n_] := T[n + 3, 2];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];Table[Length[Select[IntegerPartitions[n],ats[#]==2&]],{n,0,30,2}] (* Gus Wiseman, Jun 21 2021 *)
  • PARI
    my(x = 'x + O('x^66)); Vec( 1/((1-x)*(1-x^2)*eta(x)) ) \\ Joerg Arndt, Apr 29 2013

Formula

Euler transform of 2 2 1 1 1 1 1...
G.f.: 1/( (1-x) * (1-x^2) * Product_{k>=1} (1-x^k) ).
a(n) = Sum_{j=0..floor(n/2)} A000070(n-2*j), n>=0.
a(n) = A014153(n)/2 + A087787(n)/4 + A000070(n)/4. - Vaclav Kotesovec, Nov 05 2016
a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n/3)) / (4*Pi^2) * (1 + 35*Pi/(24*sqrt(6*n))). - Vaclav Kotesovec, Aug 18 2015, extended Nov 05 2016
a(n) = A120452(n) + A344741(n). - Gus Wiseman, Jun 21 2021

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 04 2004
Edited by Emeric Deutsch, Mar 23 2005
More terms from Franklin T. Adams-Watters, Mar 20 2006
Edited by Charles R Greathouse IV, Apr 20 2010

A344607 Number of integer partitions of n with reverse-alternating sum >= 0.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 8, 8, 15, 16, 27, 29, 48, 52, 81, 90, 135, 151, 220, 248, 352, 400, 553, 632, 859, 985, 1313, 1512, 1986, 2291, 2969, 3431, 4394, 5084, 6439, 7456, 9357, 10836, 13479, 15613, 19273, 22316, 27353, 31659, 38558, 44601, 53998, 62416, 75168
Offset: 0

Views

Author

Gus Wiseman, May 29 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
Also the number of reversed integer partitions of n with alternating sum >= 0.
A formula for the reverse-alternating sum of a partition is: (-1)^(k-1) times the number of odd parts in the conjugate partition, where k is the number of parts. So a(n) is the number of integer partitions of n whose conjugate parts are all even or whose length is odd. By conjugation, this is also the number of integer partitions of n whose parts are all even or whose greatest part is odd.
All integer partitions have alternating sum >= 0, so the non-reversed version is A000041.
Is this sequence weakly increasing? In particular, is A344611(n) <= A160786(n)?

Examples

			The a(1) = 1 through a(8) = 15 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (11111)  (321)     (421)      (422)
                                     (411)     (511)      (431)
                                     (2211)    (22111)    (521)
                                     (21111)   (31111)    (611)
                                     (111111)  (1111111)  (2222)
                                                          (3311)
                                                          (22211)
                                                          (32111)
                                                          (41111)
                                                          (221111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The non-reversed version is A000041.
The opposite version (rev-alt sum <= 0) is A027187, ranked by A028260.
The strict case for n > 0 is A067659 (even bisection: A344650).
The ordered version appears to be A116406 (even bisection: A114121).
The odd bisection is A160786.
The complement is counted by A344608.
The Heinz numbers of these partitions are A344609 (complement: A119899).
The even bisection is A344611.
A000070 counts partitions with alternating sum 1 (reversed: A000004).
A000097 counts partitions with alternating sum 2 (reversed: A120452).
A035363 counts partitions with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum.
A316524 is the alternating sum of prime indices of n (reversed: A344616).
A325534/A325535 count separable/inseparable partitions.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344612 counts partitions by sum and reverse-alternating sum.
A344618 gives reverse-alternating sums of standard compositions.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],sats[#]>=0&]],{n,0,30}]

Formula

a(n) + A344608(n) = A000041(n).
a(2n+1) = A160786(n).

A116406 Expansion of ((1 + x - 2x^2) + (1+x)*sqrt(1-4x^2))/(2(1-4x^2)).

Original entry on oeis.org

1, 1, 2, 3, 7, 11, 26, 42, 99, 163, 382, 638, 1486, 2510, 5812, 9908, 22819, 39203, 89846, 155382, 354522, 616666, 1401292, 2449868, 5546382, 9740686, 21977516, 38754732, 87167164, 154276028, 345994216, 614429672, 1374282019, 2448023843
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Interleaving of A114121 and A032443. Row sums of A116405. Binomial transform is A116409.
Appears to be the number of n-digit binary numbers not having more zeros than ones; equivalently, the number of unrestricted Dyck paths of length n not going below the axis. - Ralf Stephan, Mar 25 2008
From Gus Wiseman, Jun 20 2021: (Start)
Also the number compositions of n with alternating sum >= 0, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. The a(0) = 1 through a(5) = 11 compositions are:
() (1) (2) (3) (4) (5)
(11) (21) (22) (32)
(111) (31) (41)
(112) (113)
(121) (122)
(211) (212)
(1111) (221)
(311)
(1121)
(2111)
(11111)
(End)
From J. Stauduhar, Jan 14 2022: (Start)
Also, for n >= 2, first differences of partial row sums of Pascal's triangle. The first ceiling(n/2)+1 elements of rows n=0 to n=4 in Pascal's triangle are:
1
1 1
1 2
1 3 3
1 4 6
...
The cumulative sums of these partial rows form the sequence 1,3,6,13,24,..., and its first differences are a(2),a(3),a(4),... in this sequence.
(End)

Crossrefs

The alternating sum = 0 case is A001700 or A088218.
The alternating sum > 0 case appears to be A027306.
The bisections are A032443 (odd) and A114121 (even).
The alternating sum <= 0 version is A058622.
The alternating sum < 0 version is A294175.
The restriction to reversed partitions is A344607.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A124754 gives the alternating sum of standard compositions.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344616 lists the alternating sums of partitions by Heinz number.

Programs

  • Mathematica
    CoefficientList[Series[((1+x-2x^2)+(1+x)Sqrt[1-4x^2])/(2(1-4x^2)),{x,0,40}],x] (* Harvey P. Dale, Aug 16 2012 *)
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],ats[#]>=0&]],{n,0,15}] (* Gus Wiseman, Jun 20 2021 *)

Formula

a(n) = A114121(n/2)*(1+(-1)^n)/2 + A032443((n-1)/2)*(1-(-1)^n)/2.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-1,k). - Paul Barry, Oct 06 2007
Conjecture: n*(n-3)*a(n) +2*(-n^2+4*n-2)*a(n-1) -4*(n-2)^2*a(n-2) +8*(n-2)*(n-3)*a(n-3)=0. - R. J. Mathar, Nov 28 2014
a(n) ~ 2^(n-2) * (1 + (3+(-1)^n)/sqrt(2*Pi*n)). - Vaclav Kotesovec, May 30 2016
a(n) = 2^(n-1) - A294175(n). - Gus Wiseman, Jun 27 2021

A344651 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with alternating sum k, with k ranging from n mod 2 to n in steps of 2.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 1, 4, 2, 1, 3, 5, 2, 1, 7, 5, 2, 1, 5, 9, 5, 2, 1, 12, 10, 5, 2, 1, 7, 17, 10, 5, 2, 1, 19, 19, 10, 5, 2, 1, 11, 28, 20, 10, 5, 2, 1, 30, 33, 20, 10, 5, 2, 1, 15, 47, 35, 20, 10, 5, 2, 1, 45, 57, 36, 20, 10, 5, 2, 1, 22, 73, 62, 36, 20, 10, 5, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Jun 05 2021

Keywords

Comments

The alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. This is equal to the number of odd parts in the conjugate partition, so T(n,k) is the number of integer partitions of n with k odd parts in the conjugate partition, which is also the number of partitions of n with k odd parts.
Also the number of integer partitions of n with odd-indexed parts (odd bisection) summing to k, ceiling(n/2) <= k <= n. The even-indexed version is A346633. - Gus Wiseman, Nov 29 2021

Examples

			Triangle begins:
   1
   1
   1   1
   2   1
   2   2   1
   4   2   1
   3   5   2   1
   7   5   2   1
   5   9   5   2   1
  12  10   5   2   1
   7  17  10   5   2   1
  19  19  10   5   2   1
  11  28  20  10   5   2   1
  30  33  20  10   5   2   1
  15  47  35  20  10   5   2   1
  45  57  36  20  10   5   2   1
  22  73  62  36  20  10   5   2   1
  67  92  64  36  20  10   5   2   1
  30 114 102  65  36  20  10   5   2   1
  97 147 107  65  36  20  10   5   2   1
Row n = 10 counts the following partitions (A = 10):
  (55)          (64)         (73)       (82)     (91)   (A)
  (3322)        (442)        (433)      (622)    (811)
  (4411)        (541)        (532)      (721)
  (222211)      (3331)       (631)      (7111)
  (331111)      (4222)       (5221)     (61111)
  (22111111)    (4321)       (6211)
  (1111111111)  (5311)       (42211)
                (22222)      (52111)
                (32221)      (511111)
                (33211)      (4111111)
                (43111)
                (322111)
                (421111)
                (2221111)
                (3211111)
                (31111111)
                (211111111)
The conjugate version is:
  (A)      (55)      (3331)     (331111)    (31111111)   (1111111111)
  (64)     (73)      (5311)     (511111)    (211111111)
  (82)     (91)      (7111)     (3211111)
  (442)    (433)     (33211)    (4111111)
  (622)    (532)     (43111)    (22111111)
  (4222)   (541)     (52111)
  (22222)  (631)     (61111)
           (721)     (322111)
           (811)     (421111)
           (3322)    (2221111)
           (4321)
           (4411)
           (5221)
           (6211)
           (32221)
           (42211)
           (222211)
		

Crossrefs

This is A103919 with all zeros removed.
The strict version is A152146 interleaved with A152157.
The rows are those of A239830 interleaved with those of A239829.
The reverse version is the right half of A344612.
The strict reverse version is the right half of A344739.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A027187 counts partitions with rev-alternating sum <= 0, ranked by A028260.
A124754 lists alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344607 counts partitions with rev-alternating sum >= 0, ranked by A344609.
A344608 counts partitions with rev-alternating sum < 0, ranked by A119899.
A344610 counts partitions of n by positive rev-alternating sum.
A344611 counts partitions of 2n with rev-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
A346697 gives the sum of odd-indexed prime indices (reverse: A346699).
A346702 represents the odd bisection of compositions, sums A209281.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],ats[#]==k&]],{n,0,15},{k,Mod[n,2],n,2}]

A344604 Number of alternating compositions of n, including twins (x,x).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 13, 19, 30, 48, 76, 118, 187, 293, 461, 725, 1140, 1789, 2815, 4422, 6950, 10924, 17169, 26979, 42405, 66644, 104738, 164610, 258708, 406588, 639010, 1004287, 1578364, 2480606, 3898600, 6127152, 9629624, 15134213, 23785389, 37381849, 58750469
Offset: 0

Views

Author

Gus Wiseman, May 27 2021

Keywords

Comments

We define a composition to be alternating including twins (x,x) if there are no adjacent triples (..., x, y, z, ...) where x <= y <= z or x >= y >= z. Except in the case of twins (x,x), all such compositions are anti-runs (A003242). These compositions avoid the weak consecutive patterns (1,2,3) and (3,2,1), the strict version being A344614.
The version without twins (x,x) is A025047 (alternating compositions).

Examples

			The a(1) = 1 through a(7) = 19 compositions:
  (1)  (2)   (3)   (4)    (5)    (6)     (7)
       (11)  (12)  (13)   (14)   (15)    (16)
             (21)  (22)   (23)   (24)    (25)
                   (31)   (32)   (33)    (34)
                   (121)  (41)   (42)    (43)
                          (131)  (51)    (52)
                          (212)  (132)   (61)
                                 (141)   (142)
                                 (213)   (151)
                                 (231)   (214)
                                 (312)   (232)
                                 (1212)  (241)
                                 (2121)  (313)
                                         (412)
                                         (1213)
                                         (1312)
                                         (2131)
                                         (3121)
                                         (12121)
		

Crossrefs

A001250 counts alternating permutations.
A005649 counts anti-run patterns.
A025047 counts alternating or wiggly compositions, also A025048, A025049.
A106356 counts compositions by number of maximal anti-runs.
A114901 counts compositions where each part is adjacent to an equal part.
A325534 counts separable partitions.
A325535 counts inseparable partitions.
A344605 counts alternating patterns including twins.
A344606 counts alternating permutations of prime factors including twins.
Counting compositions by patterns:
- A011782 no conditions.
- A003242 avoiding (1,1) adjacent.
- A102726 avoiding (1,2,3).
- A106351 avoiding (1,1) adjacent by sum and length.
- A128695 avoiding (1,1,1) adjacent.
- A128761 avoiding (1,2,3) adjacent.
- A232432 avoiding (1,1,1).
- A335456 all patterns.
- A335457 all patterns adjacent.
- A335514 matching (1,2,3).
- A344614 avoiding (1,2,3) and (3,2,1) adjacent.
- A344615 weakly avoiding (1,2,3) adjacent.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]],{n,0,15}]

Formula

a(n > 0) = A025047(n) + 1 if n is even, otherwise A025047(n). - Gus Wiseman, Nov 03 2021

Extensions

a(21)-a(40) from Alois P. Heinz, Nov 04 2021

A344610 Triangle read by rows where T(n,k) is the number of integer partitions of 2n with reverse-alternating sum 2k.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 5, 3, 1, 1, 7, 9, 6, 3, 1, 1, 11, 14, 12, 6, 3, 1, 1, 15, 23, 20, 12, 6, 3, 1, 1, 22, 34, 35, 21, 12, 6, 3, 1, 1, 30, 52, 56, 38, 21, 12, 6, 3, 1, 1, 42, 75, 91, 62, 38, 21, 12, 6, 3, 1, 1, 56, 109, 140, 103, 63, 38, 21, 12, 6, 3, 1, 1
Offset: 0

Views

Author

Gus Wiseman, May 31 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(k-1) times the number of odd parts in the conjugate partition, where k is the number of parts.
Also the number of reversed integer partitions of 2n with alternating sum 2k.

Examples

			Triangle begins:
   1
   1   1
   2   1   1
   3   3   1   1
   5   5   3   1   1
   7   9   6   3   1   1
  11  14  12   6   3   1   1
  15  23  20  12   6   3   1   1
  22  34  35  21  12   6   3   1   1
  30  52  56  38  21  12   6   3   1   1
  42  75  91  62  38  21  12   6   3   1   1
  56 109 140 103  63  38  21  12   6   3   1   1
  77 153 215 163 106  63  38  21  12   6   3   1   1
Row n = 5 counts the following partitions:
  (55)          (442)        (433)      (622)    (811)  (10)
  (3322)        (541)        (532)      (721)
  (4411)        (22222)      (631)      (61111)
  (222211)      (32221)      (42211)
  (331111)      (33211)      (52111)
  (22111111)    (43111)      (4111111)
  (1111111111)  (2221111)
                (3211111)
                (211111111)
		

Crossrefs

The columns with initial 0's removed appear to converge to A006330.
The odd version is A239829.
The non-reversed version is A239830.
Row sums are A344611, odd bisection of A344607.
Including odd n and negative k gives A344612 (strict: A344739).
The strict case is A344649 (row sums: A344650).
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum.
A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344604 counts wiggly compositions with twins.
A344618 gives reverse-alternating sums of standard compositions.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],k==sats[#]&]],{n,0,15,2},{k,0,n,2}]
Showing 1-10 of 48 results. Next