A332287 Heinz numbers of integer partitions whose first differences (assuming the last part is zero) are not unimodal.
36, 50, 70, 72, 98, 100, 108, 140, 144, 154, 180, 182, 196, 200, 216, 225, 242, 250, 252, 280, 286, 288, 294, 300, 308, 324, 338, 350, 360, 363, 364, 374, 392, 396, 400, 418, 429, 432, 441, 442, 450, 462, 468, 484, 490, 494, 500, 504, 507, 540, 550, 560, 561
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 36: {1,1,2,2} 50: {1,3,3} 70: {1,3,4} 72: {1,1,1,2,2} 98: {1,4,4} 100: {1,1,3,3} 108: {1,1,2,2,2} 140: {1,1,3,4} 144: {1,1,1,1,2,2} 154: {1,4,5} 180: {1,1,2,2,3} 182: {1,4,6} 196: {1,1,4,4} 200: {1,1,1,3,3} 216: {1,1,1,2,2,2} 225: {2,2,3,3} 242: {1,5,5} 250: {1,3,3,3} 252: {1,1,2,2,4} 280: {1,1,1,3,4} For example, the prime indices of 70 with 0 appended are (4,3,1,0), with differences (-1,-2,-1), which is not unimodal, so 70 belongs to the sequence.
Links
- MathWorld, Unimodal Sequence
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; Select[Range[1000],!unimodQ[Differences[Append[Reverse[primeMS[#]],0]]]&]
Comments