A332288 Number of unimodal permutations of the multiset of prime indices of n.
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 1, 2, 2, 3, 1, 2, 2, 4, 2, 2, 1, 6, 1, 2, 3, 1, 2, 4, 1, 3, 2, 4, 1, 4, 1, 2, 2, 3, 2, 4, 1, 5, 1, 2, 1, 6, 2, 2, 2
Offset: 1
Keywords
Examples
The a(n) permutations for n = 2, 6, 12, 24, 48, 60, 120, 180: (1) (12) (112) (1112) (11112) (1123) (11123) (11223) (21) (121) (1121) (11121) (1132) (11132) (11232) (211) (1211) (11211) (1231) (11231) (11322) (2111) (12111) (1321) (11321) (12231) (21111) (2311) (12311) (12321) (3211) (13211) (13221) (23111) (22311) (32111) (23211) (32211)
Links
- Wikipedia, Permutation pattern
- MathWorld, Unimodal Sequence
Crossrefs
Dominated by A008480.
A more interesting version is A332294.
The complement is counted by A332671.
Unimodal compositions are A001523.
Unimodal normal sequences appear to be A007052.
Unimodal permutations are A011782.
Non-unimodal permutations are A059204.
Numbers with non-unimodal unsorted prime signature are A332282.
Partitions with unimodal 0-appended first differences are A332283.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; Table[Length[Select[Permutations[primeMS[n]],unimodQ]],{n,30}]
Comments