A332293 Heinz numbers of widely totally co-strongly normal integer partitions.
1, 2, 4, 6, 8, 12, 16, 30, 32, 64, 128, 180, 210, 256, 360, 512, 1024, 2048, 2310, 4096, 8192, 16384, 30030, 32768, 65536, 75600, 131072, 262144, 510510, 524288
Offset: 1
Examples
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 4: {1,1} 6: {1,2} 8: {1,1,1} 12: {1,1,2} 16: {1,1,1,1} 30: {1,2,3} 32: {1,1,1,1,1} 64: {1,1,1,1,1,1} 128: {1,1,1,1,1,1,1} 180: {1,1,2,2,3} 210: {1,2,3,4} 256: {1,1,1,1,1,1,1,1} 360: {1,1,1,2,2,3} 512: {1,1,1,1,1,1,1,1,1} 1024: {1,1,1,1,1,1,1,1,1,1} 2048: {1,1,1,1,1,1,1,1,1,1,1} 2310: {1,2,3,4,5} 4096: {1,1,1,1,1,1,1,1,1,1,1,1} 8192: {1,1,1,1,1,1,1,1,1,1,1,1,1} For example, 180 is the Heinz number of (3,2,2,1,1), with run-lengths (3,2,2,1,1) -> (1,2,2) -> (1,2) -> (1,1). These are all normal with weakly increasing multiplicities and the last is all 1's, so 180 belongs to the sequence.
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; normQ[m_]:=m=={}||Union[m]==Range[Max[m]]; gnaQ[y_]:=Or[y=={},Union[y]=={1},And[normQ[y],LessEqual@@Length/@Split[y],gnaQ[Length/@Split[y]]]]; Select[Range[1000],gnaQ[Reverse[primeMS[#]]]&]
Comments