A332297 Number of narrowly totally strongly normal integer partitions of n.
1, 1, 2, 3, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2
Offset: 0
Examples
The a(1) = 1, a(2) = 2, a(3) = 3, and a(55) = 4 partitions: (1) (2) (3) (55) (1,1) (2,1) (10,9,8,7,6,5,4,3,2,1) (1,1,1) (5,5,5,5,5,4,4,4,4,3,3,3,2,2,1) (1)^55 For example, starting with the partition (3,3,2,2,1) and repeatedly taking run-lengths gives (3,3,2,2,1) -> (2,2,1) -> (2,1) -> (1,1) -> (2). The first four are normal and have weakly decreasing run-lengths, and the last is a singleton, so (3,3,2,2,1) is counted under a(11).
Crossrefs
Programs
-
Mathematica
tinQ[q_]:=Or[q=={},Length[q]==1,And[Union[q]==Range[Max[q]],GreaterEqual@@Length/@Split[q],tinQ[Length/@Split[q]]]]; Table[Length[Select[IntegerPartitions[n],tinQ]],{n,0,30}]
Extensions
a(60)-a(80) from Jinyuan Wang, Jun 26 2020
Comments