A332314 Numbers k such that k, k + 1, k + 2 and k + 3 have the same number of divisors in Gaussian integers.
263449773, 334047725, 760228973, 862305773, 1965540624, 2136055725, 2362380525, 2477365422, 2515570575, 2613782223, 2939626925, 3181603023, 3814526223, 3987335022, 4610697039, 4771214574, 4981539822, 5018728272, 5035157775, 5186567824, 6189727725, 6329159823, 6569396973
Offset: 1
Keywords
Examples
263449773 is a term since 263449773, 263449774, 263449775 and 263449776 each have 72 divisors in Gaussian integers.
Programs
-
Mathematica
gaussNumDiv[n_] := DivisorSigma[0, n, GaussianIntegers -> True]; m = 4; s = gaussNumDiv /@ Range[m]; seq = {}; n = m + 1; While[Length[seq] < 10, If[Length @ Union[s] == 1, AppendTo[seq, n - m + 1]]; n++; s = Join[Rest[s], {gaussNumDiv[n]}]]; seq