A332313 Numbers k such that k, k + 1 and k + 2 have the same number of divisors in Gaussian integers.
23824, 38574, 52974, 62224, 71406, 105424, 110574, 191824, 201616, 209424, 240174, 249775, 282896, 285102, 297774, 326574, 340974, 375824, 393424, 407824, 440656, 451024, 496174, 509776, 553774, 587536, 599632, 600174, 606032, 623824, 628974, 631376, 667024, 672174
Offset: 1
Keywords
Examples
23824 is a term since 23824, 23825 and 23826 each have 36 divisors in Gaussian integers.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Flatten[Position[Partition[DivisorSigma[0, Range[3*10^5], GaussianIntegers -> True], 3, 1], {x_, x_, x_}]] (* after Harvey P. Dale at A005238 *)
Comments