A332318 Real part of Gaussian norm-multiply-perfect numbers, in order of increasing norm.
1, 2, 1, 3, 6, 5, 6, 10, 2, 8, 16, 12, 21, 18, 26, 30, 13, 43, 28, 6, 52, 60, 20, 10, 72, 56, 26, 28, 85, 95, 20, 100, 58, 80, 40, 36, 108, 120, 48, 190, 144, 176, 204, 38, 106, 214, 4, 84, 232, 276, 136, 216, 300, 174, 181, 263, 216, 312, 340, 140, 464, 20, 380
Offset: 1
Keywords
Examples
2 + i is a norm-perfect number since sigma(2 + i) = 3 + i, and (3^2 + 1^2) = 10 = 2 * 5 = 2 * (2^1 + 1^2). 1 + 3*i is a norm-multiply-perfect number since sigma(1 + 3*i) = 5 + 5*i, and (5^2 + 5^2) = 50 = 5 * 10 = 5 * (1^2 + 3^2).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..182
- Wayne L. McDaniel, Perfect Gaussian integers, Acta Arithmetica, Vol. 2, No. 25 (1974), pp. 137-144.
- Robert Spira, The Complex Sum of Divisors, The American Mathematical Monthly, Vol. 68, No. 2 (1961), pp. 120-124.
Crossrefs
Programs
-
Mathematica
csigma[z_] := DivisorSigma[1, z, GaussianIntegers -> True]; normultPerf[z_] := Divisible[Abs[csigma[z]]^2, Abs[z]^2]; seq = {}; max = 10^2; Do[z = a + b*I; If[Abs[z] <= max && normultPerf[z], AppendTo[seq, {Abs[z]^2, z}]], {a, 1, max}, {b, 0, max}]; Re[Transpose[Sort[seq]][[2]]] (* after T. D. Noe at A102531 *)
Comments