A332339 Number of alternately co-strong reversed integer partitions of n.
1, 1, 2, 3, 4, 5, 8, 8, 12, 14, 18, 20, 29, 28, 40, 45, 54, 59, 82, 81, 108, 118, 141, 154, 204, 204, 255, 285, 339, 363, 458, 471, 580, 632, 741, 806, 983, 1015, 1225, 1341, 1562, 1667, 2003, 2107, 2491, 2712, 3101, 3344, 3962, 4182, 4860, 5270, 6022, 6482
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 12 reversed partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (12) (13) (14) (15) (16) (17) (111) (22) (23) (24) (25) (26) (1111) (122) (33) (34) (35) (11111) (123) (124) (44) (222) (133) (125) (1122) (1222) (134) (111111) (1111111) (233) (1133) (2222) (11222) (11111111) For example, starting with the composition y = (1,2,3,3,4,4,4) and repeatedly taking run-lengths and reversing gives (1,2,3,3,4,4,4) -> (3,2,1,1) -> (2,1,1) -> (2,1) -> (1,1) -> (2) -> (1). All of these have weakly increasing run-lengths and the last is equal to (1), so y is counted under a(21).
Crossrefs
Programs
-
Mathematica
tniQ[q_]:=Or[q=={},q=={1},And[LessEqual@@Length/@Split[q],tniQ[Reverse[Length/@Split[q]]]]]; Table[Length[Select[Sort/@IntegerPartitions[n],tniQ]],{n,0,30}]
Comments