A316496 Number of totally strong integer partitions of n.
1, 1, 2, 3, 4, 5, 8, 8, 12, 13, 18, 20, 27, 27, 38, 41, 52, 56, 73, 77, 99, 105, 129, 145, 176, 186, 229, 253, 300, 329, 395, 427, 504, 555, 648, 716, 836, 905, 1065, 1173, 1340, 1475, 1703, 1860, 2140, 2349, 2671, 2944, 3365, 3666, 4167, 4582, 5160, 5668
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 12 totally strong partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (21) (22) (32) (33) (43) (44) (111) (31) (41) (42) (52) (53) (1111) (221) (51) (61) (62) (11111) (222) (331) (71) (321) (421) (332) (2211) (2221) (431) (111111) (1111111) (521) (2222) (3311) (22211) (11111111) For example, the partition (3,3,2,1) has run-lengths (2,1,1), which are weakly decreasing, but they have run-lengths (1,2), which are not weakly decreasing, so (3,3,2,1) is not totally strong.
Crossrefs
Programs
-
Mathematica
totincQ[q_]:=Or[q=={},q=={1},And[GreaterEqual@@Length/@Split[q],totincQ[Length/@Split[q]]]]; Table[Length[Select[IntegerPartitions[n],totincQ]],{n,0,30}]
Extensions
Updated with corrected terminology by Gus Wiseman, Mar 07 2020
Comments