A332350
Triangle read by rows: T(m,n) = Sum_{-m= n >= 1.
Original entry on oeis.org
0, 2, 12, 4, 26, 56, 6, 44, 98, 172, 8, 66, 148, 262, 400, 10, 92, 210, 376, 578, 836, 12, 122, 280, 502, 772, 1118, 1496, 14, 156, 362, 652, 1006, 1460, 1958, 2564, 16, 194, 452, 818, 1264, 1838, 2468, 3234, 4080, 18, 236, 554, 1004, 1554, 2264, 3042, 3988, 5034, 6212
Offset: 1
Triangle begins:
0,
2, 12,
4, 26, 56,
6, 44, 98, 172,
8, 66, 148, 262, 400,
10, 92, 210, 376, 578, 836,
12, 122, 280, 502, 772, 1118, 1496,
14, 156, 362, 652, 1006, 1460, 1958, 2564,
16, 194, 452, 818, 1264, 1838, 2468, 3234, 4080,
18, 236, 554, 1004, 1554, 2264, 3042, 3988, 5034, 6212,
...
- Max A. Alekseyev, On the number of two-dimensional threshold functions, arXiv:math/0602511 [math.CO], 2006-2010; SIAM J. Disc. Math. 24(4), 2010, pp. 1617-1631. doi:10.1137/090750184. See N(m,n) in Theorem 2.
- M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. This sequence is f_1(m,n).
-
VR := proc(m,n,q) local a,i,j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
for m from 1 to 12 do lprint(seq(VR(m,n,1),n=1..m),); od:
-
T[m_, n_] := Sum[Boole[GCD[i, j] == 1] (m - Abs[i]) (n - Abs[j]), {i, -m + 1, m - 1}, {j, -n + 1, n - 1}];
Table[T[m, n], {m, 1, 12}, {n, 1, m}] // Flatten (* Jean-François Alcover, Apr 19 2020 *)
A332357
Consider a partition of the triangle with vertices (0, 0), (1, 0), (0, 1) by the lines a_1*x_1 + a_2*x_2 = 1, where (x_1, x_2) is in {1, 2,...,m} X {1, 2,...,n}, m >= 1, n >= 1. Triangle read by rows: T(m,n) = number of cells (both 3-sided and 4-sided) in the partition, for m >= n >= 1.
Original entry on oeis.org
1, 2, 5, 3, 9, 17, 4, 14, 28, 47, 5, 20, 41, 70, 105, 6, 27, 57, 99, 150, 215, 7, 35, 75, 131, 199, 286, 381, 8, 44, 96, 169, 258, 372, 497, 649, 9, 54, 119, 211, 323, 467, 625, 817, 1029, 10, 65, 145, 258, 396, 574, 769, 1006, 1268, 1563, 11, 77, 173, 309, 475, 689, 923, 1208, 1523, 1878, 2257
Offset: 1
Triangle begins:
1,
2, 5,
3, 9, 17,
4, 14, 28, 47,
5, 20, 41, 70, 105,
6, 27, 57, 99, 150, 215,
7, 35, 75, 131, 199, 286, 381,
8, 44, 96, 169, 258, 372, 497, 649,
9, 54, 119, 211, 323, 467, 625, 817, 1029,
10, 65, 145, 258, 396, 574, 769, 1006, 1268, 1563,
...
- M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. See Theorem 13.
- N. J. A. Sloane, Illustration for (m,n) = (2,2), (3,1), (3,2), (3,3) [c_3 = number of triangles, c_4 = number of quadrilaterals; c, e, v = numbers of cells, edges, vertices]
A332367
Consider a partition of the plane (a_1,a_2) in R X R by the lines a_1*x_1 + a_2*x_2 = 1 for 0 <= x_1 <= m-1, 1 <= x_2 <= 1-1. The cells are (generalized) triangles and quadrilaterals. Triangle read by rows: T(m,n) = number of triangular cells in the partition for m >= n >= 2.
Original entry on oeis.org
4, 8, 20, 12, 32, 52, 16, 48, 80, 124, 20, 64, 108, 168, 228, 24, 84, 144, 228, 312, 428, 28, 104, 180, 288, 396, 544, 692, 32, 128, 224, 360, 496, 684, 872, 1100, 36, 152, 268, 432, 596, 824, 1052, 1328, 1604, 40, 180, 320, 520, 720, 1000, 1280, 1620, 1960, 2396
Offset: 2
Triangle begins:
4,
8, 20,
12, 32, 52,
16, 48, 80, 124,
20, 64, 108, 168, 228,
24, 84, 144, 228, 312, 428,
28, 104, 180, 288, 396, 544, 692,
32, 128, 224, 360, 496, 684, 872, 1100,
36, 152, 268, 432, 596, 824, 1052, 1328, 1604,
...
-
# Maple code for sequences mentioned in Theorem 12 of Alekseyev et al. (2015).
VR := proc(m,n,q) local a,i,j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
VS := proc(m,n) local a,i,j; a:=0; # A331781
for i from 1 to m-1 do for j from 1 to n-1 do
if gcd(i,j)=1 then a:=a+1; fi; od: od: a; end;
c3 := (m,n) -> VR(m,n,2)+4; # A332367
for m from 2 to 12 do lprint([seq(c3(m,n),n=2..m)]); od:
[seq(c3(n,n)/4,n=2..40)]; # A332368
c4 := (m,n) -> VR(m,n,1)/2 - VR(m,n,2) - 3; # A332369
for m from 2 to 12 do lprint([seq(c4(m,n),n=2..m)]); od:
[seq(c4(n,n),n=2..40)]; # A332370
ct := (m,n) -> c3(m,n)+c4(m,n); # A332371
for m from 2 to 12 do lprint([seq(ct(m,n),n=2..m)]); od:
[seq(ct(n,n),n=2..40)]; # A114043
et := (m,n) -> VR(m,n,1) - VR(m,n,2)/2 - VS(m,n) - 2; # A332372
for m from 2 to 12 do lprint([seq(et(m,n),n=2..m)]); od:
[seq(et(n,n),n=2..40)]; # A332373
vt := (m,n) -> et(m,n) - ct(m,n) +1; # A332374
for m from 2 to 12 do lprint([seq(vt(m,n),n=2..m)]); od:
[seq(vt(n,n),n=2..40)]; # A332375
A332371
Consider a partition of the plane (a_1,a_2) in R X R by the lines a_1*x_1 + a_2*x_2 = 1 for 0 <= x_1 <= m-1, 1 <= x_2 <= 1-1. The cells are (generalized) triangles and quadrilaterals. Triangle read by rows: T(m,n) = total number of cells in the partition for m >= n >= 2.
Original entry on oeis.org
7, 14, 29, 23, 50, 87, 34, 75, 132, 201, 47, 106, 189, 290, 419, 62, 141, 252, 387, 560, 749, 79, 182, 327, 504, 731, 980, 1283, 98, 227, 410, 633, 920, 1235, 1618, 2041, 119, 278, 503, 778, 1133, 1522, 1995, 2518, 3107, 142, 333, 604, 935, 1362, 1829, 2398, 3027, 3736, 4493
Offset: 2
Triangle begins:
7,
14, 29,
23, 50, 87,
34, 75, 132, 201,
47, 106, 189, 290, 419,
62, 141, 252, 387, 560, 749,
79, 182, 327, 504, 731, 980, 1283,
98, 227, 410, 633, 920, 1235, 1618, 2041,
119, 278, 503, 778, 1133, 1522, 1995, 2518, 3107,
...
A332354
Consider a partition of the triangle with vertices (0, 0), (1, 0), (0, 1) by the lines a_1*x_1 + a_2*x_2 = 1, where (x_1, x_2) is in {1, 2,...,m} X {1, 2,...,n}, m >= 1, n >= 1. Triangle read by rows: T(m,n) = number of triangular cells in the partition, for m >= n >= 1.
Original entry on oeis.org
1, 2, 5, 3, 8, 15, 4, 11, 22, 33, 5, 14, 31, 48, 71, 6, 17, 40, 63, 94, 125, 7, 20, 51, 82, 125, 168, 227, 8, 23, 62, 101, 156, 211, 286, 361, 9, 26, 75, 124, 193, 262, 357, 452, 567, 10, 29, 88, 147, 230, 313, 428, 543, 682, 821, 11, 32, 103, 174, 275, 376, 517, 658, 829, 1000, 1219
Offset: 1
Triangle begins:
1,
2, 5,
3, 8, 15,
4, 11, 22, 33,
5, 14, 31, 48, 71,
6, 17, 40, 63, 94, 125,
7, 20, 51, 82, 125, 168, 227,
8, 23, 62, 101, 156, 211, 286, 361,
9, 26, 75, 124, 193, 262, 357, 452, 567,
10, 29, 88, 147, 230, 313, 428, 543, 682, 821,
...
- M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. See Theorem 13.
- N. J. A. Sloane, Illustration for (m,n) = (2,2), (3,1), (3,2), (3,3) [c_3 = number of triangles, c_4 = number of quadrilaterals; c, e, v = numbers of cells, edges, vertices]
-
# VR(m,n,q) is f_q(m,n) from the Alekseyev et al. reference.
VR := proc(m,n,q) local a,i,j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
ct3 := proc(m,n) local i; global VR;
if m=1 or n=1 then max(m,n) else VR(m,n,2)/2+m+n+1; fi; end;
for m from 1 to 12 do lprint([seq(ct3(m,n),n=1..m)]); od:
A332372
Consider a partition of the plane (a_1,a_2) in R X R by the lines a_1*x_1 + a_2*x_2 = 1 for 0 <= x_1 <= m-1, 1 <= x_2 <= 1-1. The cells are (generalized) triangles and quadrilaterals. Triangle read by rows: T(m,n) = total number of edges in the partition for m >= n >= 2.
Original entry on oeis.org
9, 20, 43, 35, 77, 139, 54, 118, 213, 327, 77, 170, 310, 479, 703, 104, 229, 417, 642, 941, 1259, 135, 299, 546, 842, 1236, 1657, 2183, 170, 376, 688, 1062, 1561, 2094, 2759, 3487, 209, 464, 850, 1313, 1933, 2594, 3418, 4321, 5355, 252, 559, 1024, 1581, 2327, 3118, 4107, 5190, 6431, 7723
Offset: 2
Triangle begins:
9,
20, 43,
35, 77, 139,
54, 118, 213, 327,
77, 170, 310, 479, 703,
104, 229, 417, 642, 941, 1259,
135, 299, 546, 842, 1236, 1657, 2183,
170, 376, 688, 1062, 1561, 2094, 2759, 3487,
209, 464, 850, 1313, 1933, 2594, 3418, 4321, 5355,
...
A332374
Consider a partition of the plane (a_1,a_2) in R X R by the lines a_1*x_1 + a_2*x_2 = 1 for 0 <= x_1 <= m-1, 1 <= x_2 <= 1-1. The cells are (generalized) triangles and quadrilaterals. Triangle read by rows: T(m,n) = total number of vertices in the partition for m >= n >= 2.
Original entry on oeis.org
3, 7, 15, 13, 28, 53, 21, 44, 82, 127, 31, 65, 122, 190, 285, 43, 89, 166, 256, 382, 511, 57, 118, 220, 339, 506, 678, 901, 73, 150, 279, 430, 642, 860, 1142, 1447, 91, 187, 348, 536, 801, 1073, 1424, 1804, 2249, 111, 227, 421, 647, 966, 1290, 1710, 2164, 2696, 3231
Offset: 2
Triangle begins:
3,
7, 15,
13, 28, 53,
21, 44, 82, 127,
31, 65, 122, 190, 285,
43, 89, 166, 256, 382, 511,
57, 118, 220, 339, 506, 678, 901,
73, 150, 279, 430, 642, 860, 1142, 1447,
91, 187, 348, 536, 801, 1073, 1424, 1804, 2249,
...
A332351
Triangle read by rows: T(m,n) = Sum_{-m= n >= 1.
Original entry on oeis.org
0, 1, 6, 2, 13, 28, 3, 22, 49, 86, 4, 33, 74, 131, 200, 5, 46, 105, 188, 289, 418, 6, 61, 140, 251, 386, 559, 748, 7, 78, 181, 326, 503, 730, 979, 1282, 8, 97, 226, 409, 632, 919, 1234, 1617, 2040, 9, 118, 277, 502, 777, 1132, 1521, 1994, 2517, 3106, 10, 141, 332, 603, 934, 1361, 1828, 2397, 3026, 3735, 4492
Offset: 1
Triangle begins:
0,
1, 6,
2, 13, 28,
3, 22, 49, 86,
4, 33, 74, 131, 200,
5, 46, 105, 188, 289, 418,
6, 61, 140, 251, 386, 559, 748,
7, 78, 181, 326, 503, 730, 979, 1282,
8, 97, 226, 409, 632, 919, 1234, 1617, 2040,
9, 118, 277, 502, 777, 1132, 1521, 1994, 2517, 3106,
...
- Jovisa Zunic, Note on the number of two-dimensional threshold functions, SIAM J. Discrete Math. Vol. 25 (2011), No. 3, pp. 1266-1268. See Equation (1.2).
This is the lower triangle of the array in
A115009.
-
VR := proc(m,n,q) local a,i,j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
for m from 1 to 12 do lprint(seq(VR(m,n,1)/2,n=1..m),); od:
-
A332351[m_,n_]:=Sum[If[CoprimeQ[i,j],2(m-i)(n-j),0],{i,m-1},{j,n-1}]+2m*n-m-n;Table[A332351[m,n],{m,15},{n,m}] (* Paolo Xausa, Oct 18 2023 *)
A332356
Consider a partition of the triangle with vertices (0, 0), (1, 0), (0, 1) by the lines a_1*x_1 + a_2*x_2 = 1, where (x_1, x_2) is in {1, 2,...,m} X {1, 2,...,n}, m >= 1, n >= 1. Triangle read by rows: T(m,n) = number of quadrilateral cells in the partition, for m >= n >= 1.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 0, 3, 6, 14, 0, 6, 10, 22, 34, 0, 10, 17, 36, 56, 90, 0, 15, 24, 49, 74, 118, 154, 0, 21, 34, 68, 102, 161, 211, 288, 0, 28, 44, 87, 130, 205, 268, 365, 462, 0, 36, 57, 111, 166, 261, 341, 463, 586, 742, 0, 45, 70, 135, 200, 313, 406, 550, 694, 878, 1038
Offset: 1
Triangle begins:
0,
0, 0,
0, 1, 2,
0, 3, 6, 14,
0, 6, 10, 22, 34,
0, 10, 17, 36, 56, 90,
0, 15, 24, 49, 74, 118, 154,
0, 21, 34, 68, 102, 161, 211, 288,
0, 28, 44, 87, 130, 205, 268, 365, 462,
0, 36, 57, 111, 166, 261, 341, 463, 586, 742,
...
- M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. See Theorem 13.
- N. J. A. Sloane, Illustration for (m,n) = (2,2), (3,1), (3,2), (3,3) [c_3 = number of triangles, c_4 = number of quadrilaterals; c, e, v = numbers of cells, edges, vertices]
-
# VR(m,n,q) is f_q(m,n) from the Alekseyev et al. reference.
VR := proc(m,n,q) local a,i,j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
ct4 := proc(m,n) local i; global VR;
if m=1 or n=1 then 0 else VR(m,n,1)/4-VR(m,n,2)/2-m/2-n/2-1; fi; end;
for m from 1 to 12 do lprint([seq(ct4(m,n),n=1..m)]); od:
-
VR[m_, n_, q_] := Module[{a = 0, i, j}, For[i = -m + 1, i <= m - 1, i++, For[j = -n + 1, j <= n - 1, j++, If[GCD[i, j] == q, a = a + (m - Abs[i])*(n - Abs[j])]]];a];
ct4 [m_, n_] := If[m == 1 || n == 1, 0, VR[m, n, 1]/4 - VR[m, n, 2]/2 - m/2 - n/2 - 1];
Table[ct4[m, n], {m, 1, 12}, {n, 1, m}] // Flatten (* Jean-François Alcover, Mar 09 2023, after Maple code *)
A332359
Consider a partition of the triangle with vertices (0, 0), (1, 0), (0, 1) by the lines a_1*x_1 + a_2*x_2 = 1, where (x_1, x_2) is in {1, 2,...,m} X {1, 2,...,n}, m >= 1, n >= 1. Triangle read by rows: T(m,n) = number of edges in the partition, for m >= n >= 1.
Original entry on oeis.org
3, 5, 10, 7, 17, 30, 9, 26, 49, 82, 11, 37, 71, 121, 180, 13, 50, 99, 172, 259, 374, 15, 65, 130, 227, 342, 495, 656, 17, 82, 167, 294, 445, 646, 859, 1126, 19, 101, 207, 367, 557, 811, 1080, 1417, 1784, 21, 122, 253, 450, 685, 1000, 1333, 1750, 2205, 2726, 23, 145, 302, 539, 821, 1199, 1597, 2097, 2642, 3267, 3916
Offset: 1
Triangle begins:
3,
5, 10,
7, 17, 30,
9, 26, 49, 82,
11, 37, 71, 121, 180,
13, 50, 99, 172, 259, 374,
15, 65, 130, 227, 342, 495, 656,
17, 82, 167, 294, 445, 646, 859, 1126,
19, 101, 207, 367, 557, 811, 1080, 1417, 1784,
21, 122, 253, 450, 685, 1000, 1333, 1750, 2205, 2726,
...
- M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. See Theorem 13.
- N. J. A. Sloane, Illustration for (m,n) = (2,2), (3,1), (3,2), (3,3) [c_3 = number of triangles, c_4 = number of quadrilaterals; c, e, v = numbers of cells, edges, vertices]
-
VR := proc(m,n,q) local a,i,j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
cte := proc(m,n) local i; global VR;
if m=1 or n=1 then 2*max(m,n)+1 else VR(m,n,1)/2-VR(m,n,2)/4+m+n; fi; end;
for m from 1 to 12 do lprint([seq(cte(m,n),n=1..m)]); od:
Showing 1-10 of 14 results.
Comments