Original entry on oeis.org
1, 5, 17, 47, 105, 215, 381, 649, 1029, 1563, 2257, 3209, 4385, 5925, 7793, 10053, 12745, 16061, 19881, 24487, 29749, 35799, 42649, 50649, 59545, 69701, 80993, 93655, 107597, 123375, 140489, 159705, 180697, 203685, 228625, 255893, 285153, 317401, 352097, 389577
Offset: 1
A332953
The number of regions formed inside an isosceles triangle by straight line segments mutually connecting all vertices and all points that divide the two equal length sides into n equal parts; the base of the triangle contains no points other than its vertices.
Original entry on oeis.org
1, 5, 18, 52, 125, 257, 486, 832, 1333, 2027, 3048, 4304, 6057, 8167, 10749, 13929, 18058, 22664, 28533, 34981, 42519, 51425, 62118, 73473, 86768, 101902, 118695, 137138, 159147, 181752, 208813, 237209, 268614, 303718, 340882, 380811, 427540, 477134, 530047
Offset: 1
- Lars Blomberg, Table of n, a(n) for n = 1..70
- Scott R. Shannon, Illustration for n = 2.
- Scott R. Shannon, Illustration for n = 3.
- Scott R. Shannon, Illustration for n = 4.
- Scott R. Shannon, Illustration for n = 5.
- Scott R. Shannon, Illustration for n = 6.
- Scott R. Shannon, Illustration for n = 8.
- Scott R. Shannon, Illustration for n = 10.
- Scott R. Shannon, Illustration for n = 12.
- Scott R. Shannon, Illustration for n = 15.
- Scott R. Shannon, Illustration for n = 5 with random distance-based coloring.
- Scott R. Shannon, Illustration for n = 10 with random distance-based coloring.
- Scott R. Shannon, Illustration for n = 15 with random distance-based coloring.
A333025
Irregular table read by rows: Take an isosceles triangle with its equal length sides divided into n equal parts with all diagonals drawn, as in A332953. Then T(n,k) = number of k-sided polygons in that figure for k>=3.
Original entry on oeis.org
1, 5, 14, 3, 1, 29, 19, 4, 50, 66, 9, 81, 164, 12, 134, 313, 37, 2, 219, 546, 60, 7, 359, 853, 112, 9, 556, 1294, 160, 16, 1, 779, 1940, 283, 43, 3, 1105, 2780, 360, 53, 6, 1540, 3750, 670, 91, 5, 1, 2087, 5064, 873, 132, 11, 2806, 6625, 1144, 164, 7, 3
Offset: 1
Table begins:
1;
5;
14, 3, 1;
29, 19, 4;
50, 66, 9;
81, 164, 12;
134, 313, 37, 2;
219, 546, 60, 7;
359, 853, 112, 9;
556, 1294, 160, 16, 1;
779, 1940, 283, 43, 3;
1105, 2780, 360, 53, 6;
1540, 3750, 670, 91, 5, 1;
2087, 5064, 873, 132, 11;
2806, 6625, 1144, 164, 7, 3;
The row sums are A332953.
A333027
The number of edges formed on an isosceles triangle by straight line segments mutually connecting all vertices and all points that divide the two equal length sides into n equal parts; the base of the triangle contains no points other than its vertices.
Original entry on oeis.org
3, 10, 33, 96, 235, 486, 933, 1600, 2561, 3884, 5907, 8310, 11793, 15890, 20863, 27002, 35229, 44117, 55820, 68312, 82931, 100368, 121711, 143685, 169750, 199509, 232366, 268169, 312132, 355839, 409902, 465503, 527080, 596443, 668961, 746443, 839830, 937967
Offset: 1
A333026
The number of vertices formed on an isosceles triangle by straight line segments mutually connecting all vertices and all points that divide the two equal length sides into n equal parts; the base of the triangle contains no points other than its vertices.
Original entry on oeis.org
3, 6, 16, 45, 111, 230, 448, 769, 1229, 1858, 2860, 4007, 5737, 7724, 10115, 13074, 17172, 21454, 27288, 33332, 40413, 48944, 59594, 70213, 82983, 97608, 113672, 131032, 152986, 174088, 201090, 228295, 258467, 292726, 328080, 365633, 412291, 460834, 512016
Offset: 1
A332354
Consider a partition of the triangle with vertices (0, 0), (1, 0), (0, 1) by the lines a_1*x_1 + a_2*x_2 = 1, where (x_1, x_2) is in {1, 2,...,m} X {1, 2,...,n}, m >= 1, n >= 1. Triangle read by rows: T(m,n) = number of triangular cells in the partition, for m >= n >= 1.
Original entry on oeis.org
1, 2, 5, 3, 8, 15, 4, 11, 22, 33, 5, 14, 31, 48, 71, 6, 17, 40, 63, 94, 125, 7, 20, 51, 82, 125, 168, 227, 8, 23, 62, 101, 156, 211, 286, 361, 9, 26, 75, 124, 193, 262, 357, 452, 567, 10, 29, 88, 147, 230, 313, 428, 543, 682, 821, 11, 32, 103, 174, 275, 376, 517, 658, 829, 1000, 1219
Offset: 1
Triangle begins:
1,
2, 5,
3, 8, 15,
4, 11, 22, 33,
5, 14, 31, 48, 71,
6, 17, 40, 63, 94, 125,
7, 20, 51, 82, 125, 168, 227,
8, 23, 62, 101, 156, 211, 286, 361,
9, 26, 75, 124, 193, 262, 357, 452, 567,
10, 29, 88, 147, 230, 313, 428, 543, 682, 821,
...
- M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. See Theorem 13.
- N. J. A. Sloane, Illustration for (m,n) = (2,2), (3,1), (3,2), (3,3) [c_3 = number of triangles, c_4 = number of quadrilaterals; c, e, v = numbers of cells, edges, vertices]
-
# VR(m,n,q) is f_q(m,n) from the Alekseyev et al. reference.
VR := proc(m,n,q) local a,i,j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
ct3 := proc(m,n) local i; global VR;
if m=1 or n=1 then max(m,n) else VR(m,n,2)/2+m+n+1; fi; end;
for m from 1 to 12 do lprint([seq(ct3(m,n),n=1..m)]); od:
A332356
Consider a partition of the triangle with vertices (0, 0), (1, 0), (0, 1) by the lines a_1*x_1 + a_2*x_2 = 1, where (x_1, x_2) is in {1, 2,...,m} X {1, 2,...,n}, m >= 1, n >= 1. Triangle read by rows: T(m,n) = number of quadrilateral cells in the partition, for m >= n >= 1.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 0, 3, 6, 14, 0, 6, 10, 22, 34, 0, 10, 17, 36, 56, 90, 0, 15, 24, 49, 74, 118, 154, 0, 21, 34, 68, 102, 161, 211, 288, 0, 28, 44, 87, 130, 205, 268, 365, 462, 0, 36, 57, 111, 166, 261, 341, 463, 586, 742, 0, 45, 70, 135, 200, 313, 406, 550, 694, 878, 1038
Offset: 1
Triangle begins:
0,
0, 0,
0, 1, 2,
0, 3, 6, 14,
0, 6, 10, 22, 34,
0, 10, 17, 36, 56, 90,
0, 15, 24, 49, 74, 118, 154,
0, 21, 34, 68, 102, 161, 211, 288,
0, 28, 44, 87, 130, 205, 268, 365, 462,
0, 36, 57, 111, 166, 261, 341, 463, 586, 742,
...
- M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. See Theorem 13.
- N. J. A. Sloane, Illustration for (m,n) = (2,2), (3,1), (3,2), (3,3) [c_3 = number of triangles, c_4 = number of quadrilaterals; c, e, v = numbers of cells, edges, vertices]
-
# VR(m,n,q) is f_q(m,n) from the Alekseyev et al. reference.
VR := proc(m,n,q) local a,i,j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
ct4 := proc(m,n) local i; global VR;
if m=1 or n=1 then 0 else VR(m,n,1)/4-VR(m,n,2)/2-m/2-n/2-1; fi; end;
for m from 1 to 12 do lprint([seq(ct4(m,n),n=1..m)]); od:
-
VR[m_, n_, q_] := Module[{a = 0, i, j}, For[i = -m + 1, i <= m - 1, i++, For[j = -n + 1, j <= n - 1, j++, If[GCD[i, j] == q, a = a + (m - Abs[i])*(n - Abs[j])]]];a];
ct4 [m_, n_] := If[m == 1 || n == 1, 0, VR[m, n, 1]/4 - VR[m, n, 2]/2 - m/2 - n/2 - 1];
Table[ct4[m, n], {m, 1, 12}, {n, 1, m}] // Flatten (* Jean-François Alcover, Mar 09 2023, after Maple code *)
A332359
Consider a partition of the triangle with vertices (0, 0), (1, 0), (0, 1) by the lines a_1*x_1 + a_2*x_2 = 1, where (x_1, x_2) is in {1, 2,...,m} X {1, 2,...,n}, m >= 1, n >= 1. Triangle read by rows: T(m,n) = number of edges in the partition, for m >= n >= 1.
Original entry on oeis.org
3, 5, 10, 7, 17, 30, 9, 26, 49, 82, 11, 37, 71, 121, 180, 13, 50, 99, 172, 259, 374, 15, 65, 130, 227, 342, 495, 656, 17, 82, 167, 294, 445, 646, 859, 1126, 19, 101, 207, 367, 557, 811, 1080, 1417, 1784, 21, 122, 253, 450, 685, 1000, 1333, 1750, 2205, 2726, 23, 145, 302, 539, 821, 1199, 1597, 2097, 2642, 3267, 3916
Offset: 1
Triangle begins:
3,
5, 10,
7, 17, 30,
9, 26, 49, 82,
11, 37, 71, 121, 180,
13, 50, 99, 172, 259, 374,
15, 65, 130, 227, 342, 495, 656,
17, 82, 167, 294, 445, 646, 859, 1126,
19, 101, 207, 367, 557, 811, 1080, 1417, 1784,
21, 122, 253, 450, 685, 1000, 1333, 1750, 2205, 2726,
...
- M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. See Theorem 13.
- N. J. A. Sloane, Illustration for (m,n) = (2,2), (3,1), (3,2), (3,3) [c_3 = number of triangles, c_4 = number of quadrilaterals; c, e, v = numbers of cells, edges, vertices]
-
VR := proc(m,n,q) local a,i,j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
cte := proc(m,n) local i; global VR;
if m=1 or n=1 then 2*max(m,n)+1 else VR(m,n,1)/2-VR(m,n,2)/4+m+n; fi; end;
for m from 1 to 12 do lprint([seq(cte(m,n),n=1..m)]); od:
A332361
Consider a partition of the triangle with vertices (0, 0), (1, 0), (0, 1) by the lines a_1*x_1 + a_2*x_2 = 1, where (x_1, x_2) is in {1, 2,...,m} X {1, 2,...,n}, m >= 1, n >= 1. Triangle read by rows: T(m,n) = number of vertices in the partition, for m >= n >= 1.
Original entry on oeis.org
3, 4, 6, 5, 9, 14, 6, 13, 22, 36, 7, 18, 31, 52, 76, 8, 24, 43, 74, 110, 160, 9, 31, 56, 97, 144, 210, 276, 10, 39, 72, 126, 188, 275, 363, 478, 11, 48, 89, 157, 235, 345, 456, 601, 756, 12, 58, 109, 193, 290, 427, 565, 745, 938, 1164, 13, 69, 130, 231, 347, 511, 675, 890, 1120, 1390, 1660
Offset: 1
Triangle begins:
3,
4, 6,
5, 9, 14,
6, 13, 22, 36,
7, 18, 31, 52, 76,
8, 24, 43, 74, 110, 160,
9, 31, 56, 97, 144, 210, 276,
10, 39, 72, 126, 188, 275, 363, 478,
11, 48, 89, 157, 235, 345, 456, 601, 756,
12, 58, 109, 193, 290, 427, 565, 745, 938, 1164,
...
- M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. See Theorem 13.
- N. J. A. Sloane, Illustration for (m,n) = (2,2), (3,1), (3,2), (3,3) [c_3 = number of triangles, c_4 = number of quadrilaterals; c, e, v = numbers of cells, edges, vertices]
-
VR := proc(m,n,q) local a,i,j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i,j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
ct3 := proc(m,n) local i; global VR;
if m=1 or n=1 then max(m,n) else VR(m,n,2)/2+m+n+1; fi; end; # A332354
ct4 := proc(m,n) local i; global VR;
if m=1 or n=1 then 0 else VR(m,n,1)/4-VR(m,n,2)/2-m/2-n/2-1; fi; end; # A332356
ct := (m,n) -> ct3(m,n) + ct4(m,n); # A332357
cte := proc(m,n) local i; global VR;
if m=1 or n=1 then 2*max(m,n)+1 else VR(m,n,1)/2-VR(m,n,2)/4+m+n; fi; end; # A332359
ctv := (m,n) -> cte(m,n) - ct(m,n) + 1; # A332361
for m from 1 to 12 do lprint([seq(ctv(m,n),n=1..m)]); od:
Showing 1-9 of 9 results.
Comments