cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A333025 Irregular table read by rows: Take an isosceles triangle with its equal length sides divided into n equal parts with all diagonals drawn, as in A332953. Then T(n,k) = number of k-sided polygons in that figure for k>=3.

Original entry on oeis.org

1, 5, 14, 3, 1, 29, 19, 4, 50, 66, 9, 81, 164, 12, 134, 313, 37, 2, 219, 546, 60, 7, 359, 853, 112, 9, 556, 1294, 160, 16, 1, 779, 1940, 283, 43, 3, 1105, 2780, 360, 53, 6, 1540, 3750, 670, 91, 5, 1, 2087, 5064, 873, 132, 11, 2806, 6625, 1144, 164, 7, 3
Offset: 1

Views

Author

Keywords

Comments

See the links in A332953 for images of the triangles.

Examples

			Table begins:
1;
5;
14, 3, 1;
29, 19, 4;
50, 66, 9;
81, 164, 12;
134, 313, 37, 2;
219, 546, 60, 7;
359, 853, 112, 9;
556, 1294, 160, 16, 1;
779, 1940, 283, 43, 3;
1105, 2780, 360, 53, 6;
1540, 3750, 670, 91, 5, 1;
2087, 5064, 873, 132, 11;
2806, 6625, 1144, 164, 7, 3;
The row sums are A332953.
		

Crossrefs

Cf. A332953 (regions), A333026 (vertices), A333027 (edges), A007678, A092867, A331452, A331911, A332357, A332358.

A333027 The number of edges formed on an isosceles triangle by straight line segments mutually connecting all vertices and all points that divide the two equal length sides into n equal parts; the base of the triangle contains no points other than its vertices.

Original entry on oeis.org

3, 10, 33, 96, 235, 486, 933, 1600, 2561, 3884, 5907, 8310, 11793, 15890, 20863, 27002, 35229, 44117, 55820, 68312, 82931, 100368, 121711, 143685, 169750, 199509, 232366, 268169, 312132, 355839, 409902, 465503, 527080, 596443, 668961, 746443, 839830, 937967
Offset: 1

Views

Author

Keywords

Comments

See the links in A332953 for images of the triangles.

Crossrefs

Cf. A332953 (regions), A333025 (n-gons), A333026 (vertices), A007678, A092867, A331452, A331911, A332357, A332358.

Extensions

a(16) and beyond from Lars Blomberg, May 26 2020

A356984 Number of regions in an equilateral triangle when n internal equilateral triangles are drawn between the 3n points that divide each side into n+1 equal parts.

Original entry on oeis.org

1, 4, 13, 28, 49, 70, 109, 148, 181, 244, 301, 334, 433, 508, 565, 676, 769, 811, 973, 1069, 1165, 1324, 1453, 1534, 1729, 1876, 1957, 2182, 2353, 2446, 2701, 2884, 3013, 3268, 3454, 3538, 3889, 4108, 4261, 4519, 4801, 4960, 5293, 5536, 5668, 6076, 6349, 6502, 6913, 7204, 7405, 7798, 8113
Offset: 0

Views

Author

Scott R. Shannon, Sep 08 2022

Keywords

Comments

See A357007 for further images.

Crossrefs

Cf. A357007 (vertices), A357008 (edges), A092867, A092098, A332953, A343755.

Formula

a(n) = A357008(n) - A357007(n) + 1 by Euler's formula.
Conjecture: a(n) = 3*n^2 + 1 for equilateral triangles that only contain simple vertices when cut by n internal equilateral triangles. This is never the case if (n + 1) mod 3 = 0 for n > 3.
a(n) = 1 + 3*n + T2(n) + 2*T3(n) + 3*T4(n); a(n) = 1 + 3*n^2 - T3(n) - 3*T4(n), where T2 is the number of internal vertices meeting exactly two segments (these vertices are labeled in the A357007 links as "4 ngons"), T3 is the number of internal vertices meeting exactly three segments ("6 ngons"), and T4 is the number of internal vertices meeting exactly four segments ("8 ngons"). - Talmon Silver, Sep 23 2022

A333026 The number of vertices formed on an isosceles triangle by straight line segments mutually connecting all vertices and all points that divide the two equal length sides into n equal parts; the base of the triangle contains no points other than its vertices.

Original entry on oeis.org

3, 6, 16, 45, 111, 230, 448, 769, 1229, 1858, 2860, 4007, 5737, 7724, 10115, 13074, 17172, 21454, 27288, 33332, 40413, 48944, 59594, 70213, 82983, 97608, 113672, 131032, 152986, 174088, 201090, 228295, 258467, 292726, 328080, 365633, 412291, 460834, 512016
Offset: 1

Views

Author

Keywords

Comments

See the links in A332953 for images of the triangles.

Crossrefs

Cf. A332953 (regions), A333025 (n-gons), A333027 (edges), A007678, A092867, A331452, A331911, A332357, A332358.

Extensions

a(16) and beyond from Lars Blomberg, May 26 2020

A333519 Number of regions in a polygon whose boundary consists of n+2 equally spaced points around a semicircle and n+2 equally spaced points along the diameter (a total of 2n+2 points). See Comments for precise definition.

Original entry on oeis.org

0, 2, 13, 48, 141, 312, 652, 1160, 1978, 3106, 4775, 6826, 9803, 13328, 17904, 23536, 30652, 38640, 48945, 60300, 74248, 89892, 108768, 128990, 153826, 180206, 211483, 245000, 284375, 325140, 374450, 425312, 484168, 545938, 616981, 690132, 775077, 862220
Offset: 0

Views

Author

Keywords

Comments

A semicircular polygon with 2n+2 points is created by placing n+2 equally spaced vertices along the semicircle's arc (including the two end vertices). Also place n+2 equally spaced vertices along the diameter (again including the same two end vertices). Now connect every pair of vertices by a straight line segment. The sequence gives the number of regions in the resulting figure.

Crossrefs

Extensions

a(21) and beyond from Lars Blomberg, May 01 2020

A125641 Square of the (3,1)-entry of the 3 X 3 matrix M^n, where M = [1,0,0; 1,1,0; 1,i,1].

Original entry on oeis.org

1, 5, 18, 52, 125, 261, 490, 848, 1377, 2125, 3146, 4500, 6253, 8477, 11250, 14656, 18785, 23733, 29602, 36500, 44541, 53845, 64538, 76752, 90625, 106301, 123930, 143668, 165677, 190125, 217186, 247040, 279873, 315877, 355250, 398196, 444925
Offset: 1

Views

Author

Gary W. Adamson, Nov 28 2006

Keywords

Comments

Conjecture [False!]: Draw the segments joining every lattice point on axis X with every lattice point on axis Y for 1 <= x <= n and 1 <= y <= n. The number of regions formed with these segments and axis X and Y is a(n). - César Eliud Lozada, Feb 14 2013
The above conjecture appears to be wrong. The number of regions formed by this construction is given in A332953, which differs from this sequence for n > 5. - Scott R. Shannon, Mar 04 2020

Examples

			a(5)=25 because M^5 = [1,0,0; 5,1,0; 5+10i, 5i, 1] and |5+10i|^2 = 125.
		

Crossrefs

Programs

  • GAP
    List([1..40],n-> n^2*(n^2-2*n+5)/4); # Muniru A Asiru, Feb 22 2019
    
  • Magma
    [n^2*(n^2-2*n+5)/4: n in [1..40]]; // G. C. Greubel, Feb 22 2019
    
  • Maple
    b[1]:=1: b[2]:=2+I: b[3]:=3+3*I: for n from 4 to 45 do b[n]:=3*b[n-1]-3*b[n-2]+b[n-3] od: seq(abs(b[j])^2,j=1..45);
    with(linalg): M[1]:=matrix(3,3,[1,0,0,1,1,0,1,I,1]): for n from 2 to 45 do M[n]:=multiply(M[1],M[n-1]) od: seq(abs(M[j][3,1])^2,j=1..45);
    seq(sum((binomial(n,m))^2,m=1..2),n=1..37); # Zerinvary Lajos, Jun 19 2008
    # alternative Maple program:
    a:= n-> abs((<<1|0|0>, <1|1|0>, <1|I|1>>^n)[3,1])^2:
    seq(a(n), n=1..40);  # Alois P. Heinz, Mar 09 2020
  • Mathematica
    Table[n^2(n^2-2n+5)/4,{n,40}] (* Vincenzo Librandi, Feb 14 2012 *)
  • PARI
    vector(40, n, n^2*(n^2-2*n+5)/4) \\ G. C. Greubel, Feb 22 2019
    
  • Sage
    [n^2*(n^2-2*n+5)/4 for n in (1..40)] # G. C. Greubel, Feb 22 2019

Formula

a(n) = |b(n)|^2, where b(n) = 3b(n-1) - 3b(n-2) + b(n-3) for n >= 4; b(1)=1, b(2)=2+i, b(3)=3+3i (the recurrence relation follows from the minimal polynomial t^3 - 3t^2 + 3t - 1 of the matrix M).
a(n) = n^2*(n^2 - 2*n + 5)/4. - T. D. Noe, Feb 09 2007
O.g.f.: x*(1 + 3*x^2 + 2*x^3)/(1-x)^5. - R. J. Mathar, Dec 05 2007
a(n) = binomial(n,2)^2 + n^2, n > 1. - Gary Detlefs, Nov 23 2011
E.g.f.: x*(4 +6*x +4*x^2 +x^3)*exp(x)/4. - G. C. Greubel, Feb 22 2019

Extensions

Edited by Emeric Deutsch, Dec 27 2006
Definition revised by N. J. A. Sloane, Mar 05 2020
Showing 1-6 of 6 results.