A333025
Irregular table read by rows: Take an isosceles triangle with its equal length sides divided into n equal parts with all diagonals drawn, as in A332953. Then T(n,k) = number of k-sided polygons in that figure for k>=3.
Original entry on oeis.org
1, 5, 14, 3, 1, 29, 19, 4, 50, 66, 9, 81, 164, 12, 134, 313, 37, 2, 219, 546, 60, 7, 359, 853, 112, 9, 556, 1294, 160, 16, 1, 779, 1940, 283, 43, 3, 1105, 2780, 360, 53, 6, 1540, 3750, 670, 91, 5, 1, 2087, 5064, 873, 132, 11, 2806, 6625, 1144, 164, 7, 3
Offset: 1
Table begins:
1;
5;
14, 3, 1;
29, 19, 4;
50, 66, 9;
81, 164, 12;
134, 313, 37, 2;
219, 546, 60, 7;
359, 853, 112, 9;
556, 1294, 160, 16, 1;
779, 1940, 283, 43, 3;
1105, 2780, 360, 53, 6;
1540, 3750, 670, 91, 5, 1;
2087, 5064, 873, 132, 11;
2806, 6625, 1144, 164, 7, 3;
The row sums are A332953.
A333027
The number of edges formed on an isosceles triangle by straight line segments mutually connecting all vertices and all points that divide the two equal length sides into n equal parts; the base of the triangle contains no points other than its vertices.
Original entry on oeis.org
3, 10, 33, 96, 235, 486, 933, 1600, 2561, 3884, 5907, 8310, 11793, 15890, 20863, 27002, 35229, 44117, 55820, 68312, 82931, 100368, 121711, 143685, 169750, 199509, 232366, 268169, 312132, 355839, 409902, 465503, 527080, 596443, 668961, 746443, 839830, 937967
Offset: 1
A356984
Number of regions in an equilateral triangle when n internal equilateral triangles are drawn between the 3n points that divide each side into n+1 equal parts.
Original entry on oeis.org
1, 4, 13, 28, 49, 70, 109, 148, 181, 244, 301, 334, 433, 508, 565, 676, 769, 811, 973, 1069, 1165, 1324, 1453, 1534, 1729, 1876, 1957, 2182, 2353, 2446, 2701, 2884, 3013, 3268, 3454, 3538, 3889, 4108, 4261, 4519, 4801, 4960, 5293, 5536, 5668, 6076, 6349, 6502, 6913, 7204, 7405, 7798, 8113
Offset: 0
- Scott R. Shannon, Table of n, a(n) for n = 0..250
- Scott R. Shannon, Image for n = 1.
- Scott R. Shannon, Image for n = 2.
- Scott R. Shannon, Image for n = 3.
- Scott R. Shannon, Image for n = 5. This is the first term that forms intersections with non-simple vertices.
- Scott R. Shannon, Image for n = 10.
- Scott R. Shannon, Image for n = 50.
- Scott R. Shannon, Image for n = 100.
- Scott R. Shannon, Image for n = 200.
- Talmon Silver, Classification of the intersection points and the number of regions
A333026
The number of vertices formed on an isosceles triangle by straight line segments mutually connecting all vertices and all points that divide the two equal length sides into n equal parts; the base of the triangle contains no points other than its vertices.
Original entry on oeis.org
3, 6, 16, 45, 111, 230, 448, 769, 1229, 1858, 2860, 4007, 5737, 7724, 10115, 13074, 17172, 21454, 27288, 33332, 40413, 48944, 59594, 70213, 82983, 97608, 113672, 131032, 152986, 174088, 201090, 228295, 258467, 292726, 328080, 365633, 412291, 460834, 512016
Offset: 1
A333519
Number of regions in a polygon whose boundary consists of n+2 equally spaced points around a semicircle and n+2 equally spaced points along the diameter (a total of 2n+2 points). See Comments for precise definition.
Original entry on oeis.org
0, 2, 13, 48, 141, 312, 652, 1160, 1978, 3106, 4775, 6826, 9803, 13328, 17904, 23536, 30652, 38640, 48945, 60300, 74248, 89892, 108768, 128990, 153826, 180206, 211483, 245000, 284375, 325140, 374450, 425312, 484168, 545938, 616981, 690132, 775077, 862220
Offset: 0
A125641
Square of the (3,1)-entry of the 3 X 3 matrix M^n, where M = [1,0,0; 1,1,0; 1,i,1].
Original entry on oeis.org
1, 5, 18, 52, 125, 261, 490, 848, 1377, 2125, 3146, 4500, 6253, 8477, 11250, 14656, 18785, 23733, 29602, 36500, 44541, 53845, 64538, 76752, 90625, 106301, 123930, 143668, 165677, 190125, 217186, 247040, 279873, 315877, 355250, 398196, 444925
Offset: 1
a(5)=25 because M^5 = [1,0,0; 5,1,0; 5+10i, 5i, 1] and |5+10i|^2 = 125.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- César Eliud Lozada, Counting regions [Warning: Although the drawings here appear to be correct for n <= 5, the generalization to higher n fails - see Comment above and A332953. - _N. J. A. Sloane_, Mar 04 2020]
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
List([1..40],n-> n^2*(n^2-2*n+5)/4); # Muniru A Asiru, Feb 22 2019
-
[n^2*(n^2-2*n+5)/4: n in [1..40]]; // G. C. Greubel, Feb 22 2019
-
b[1]:=1: b[2]:=2+I: b[3]:=3+3*I: for n from 4 to 45 do b[n]:=3*b[n-1]-3*b[n-2]+b[n-3] od: seq(abs(b[j])^2,j=1..45);
with(linalg): M[1]:=matrix(3,3,[1,0,0,1,1,0,1,I,1]): for n from 2 to 45 do M[n]:=multiply(M[1],M[n-1]) od: seq(abs(M[j][3,1])^2,j=1..45);
seq(sum((binomial(n,m))^2,m=1..2),n=1..37); # Zerinvary Lajos, Jun 19 2008
# alternative Maple program:
a:= n-> abs((<<1|0|0>, <1|1|0>, <1|I|1>>^n)[3,1])^2:
seq(a(n), n=1..40); # Alois P. Heinz, Mar 09 2020
-
Table[n^2(n^2-2n+5)/4,{n,40}] (* Vincenzo Librandi, Feb 14 2012 *)
-
vector(40, n, n^2*(n^2-2*n+5)/4) \\ G. C. Greubel, Feb 22 2019
-
[n^2*(n^2-2*n+5)/4 for n in (1..40)] # G. C. Greubel, Feb 22 2019
Showing 1-6 of 6 results.
Comments