A332389 Number A(n,w) of circular Dyck paths with n entries, and width at most w.
1, 1, 2, 1, 4, 3, 1, 8, 7, 4, 1, 16, 18, 10, 5, 1, 32, 47, 28, 13, 6, 1, 64, 123, 82, 38, 16, 7, 1, 128, 322, 244, 117, 48, 19, 8, 1, 256, 843, 730, 370, 152, 58, 22, 9, 1, 512, 2207, 2188, 1186, 496, 187, 68, 25, 10, 1, 1024, 5778, 6562, 3827, 1648, 622, 222, 78, 28, 11
Offset: 1
Examples
The table begins as 1, 2, 3, 4, 5, ... 1, 4, 7, 10, 13, ... 1, 8, 18, 28, 38, ... 1, 16, 47, 82, 117, ... 1, 32, 123, 244, 370, ... ... A(5,3)=123 and a few of the corresponding circular area lists are 00000, 10000,...,12210,...,12222, 22222.
Links
- Per Alexandersson, Svante Linusson and Samu Potka, The cyclic sieving phenomenon on circular Dyck paths, arXiv:1903.01327 [math.CO], 2019.
- Per Alexandersson, Svante Linusson and Samu Potka, The cyclic sieving phenomenon on circular Dyck paths, Electronic Journal of Combinatorics 26, No.4 (2019).
Crossrefs
A194460 is the diagonal.
Programs
-
Mathematica
CircularDyckPaths[n_, w_] := With[{d = w + 2}, Sum[Binomial[2 n - 1, n - 1 - d s] - Binomial[2 n - 1, n + j + d s] , {j, w}, {s, -2 (n + 2), 2 (n + 2)}] ]; Table[ CircularDyckPaths[n, w] , {n, 1, 10}, {w, 1, 10}]
Formula
A(n,w) = Sum_{k=-2*(n+2)..2*(n+2)} Sum_{j=1..w} binomial(2n-1, n-1-(w+2)*k) - binomial(2*n-1, n + j + (w+2)*k).
Comments