A332465 Numbers n for which A269174(sigma(n)) is equal to 2*A269174(n).
6, 28, 348, 496, 732, 886, 2924, 3573, 4972, 5448, 7544, 8128, 23388, 54842, 66928, 89200, 92296, 109786, 118064, 121552, 349512, 356488, 367472, 550432, 634784, 839984, 842452, 1234048, 1561408, 1797496, 2154584, 2364832, 2788808, 2927992, 3451456, 3585328, 5952364, 5991852, 6687136, 8238752, 10594336, 11210712, 11261020
Offset: 1
Keywords
Examples
k factorization sigma(k) A269174(sigma(k)) = A269174(2*k) 348 = 2^2 * 3 * 29 840 2008, 3573 = 3^2 * 397 5174 15486, 29255157 = 3^2 * 3250573 42257462 126737534, 936109557 = 3^2 * 104012173 1352158262 4055424126.
Links
Crossrefs
Programs
-
Mathematica
b[n_] := BitAnd[BitOr[n, 2n], BitOr[BitXor[n, 2n], BitXor[n, 4n]]]; okQ[n_] := b[DivisorSigma[1, n]] == 2 b[n]; Reap[For[n = 1, n <= 12*10^6, n++, If[okQ[n], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Feb 23 2020 *)
-
PARI
A269174(n) = bitand(bitor(n,n<<1),bitor(bitxor(n,n<<1),bitxor(n,n<<2))); isA332465(n) = (A269174(sigma(n))==2*A269174(n));
Comments