A332511 Numbers k such that phi(k) == 2 (mod 12), where phi is the Euler totient function (A000010).
3, 4, 6, 121, 242, 529, 1058, 2209, 3481, 4418, 5041, 6889, 6962, 10082, 11449, 13778, 14641, 17161, 22898, 27889, 29282, 32041, 34322, 36481, 51529, 55778, 57121, 63001, 64082, 69169, 72962, 96721, 103058, 114242, 120409, 126002, 128881, 138338, 146689, 175561
Offset: 1
Keywords
Examples
121 is a term since phi(121) = 110 == 2 (mod 12).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Joseph B. Dence and Thomas P. Dence, A Surprise Regarding the Equation phi(x) = 2(6n + 1), The College Mathematics Journal, Vol. 26, No. 4 (1995), pp. 297-301.
- Thomas Dence and Carl Pomerance, Euler's function in residue classes, in: K. Alladi, P. D. T. A. Elliott, A. Granville and G. Tenenbaum (eds.), Analytic and Elementary Number Theory, Developments in Mathematics, Vol. 1, Springer, Boston, MA, 1998, pp. 7-20, alternative link.
Crossrefs
Programs
-
Magma
[k:k in [1..180000]| EulerPhi(k) mod 12 eq 2]; // Marius A. Burtea, Feb 14 2020
-
Mathematica
Select[Range[2*10^5], Mod[EulerPhi[#], 12] == 2 &]
Comments