cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A332525 Decimal expansion of the minimal distance between (0,0) and the branch of the graph of y = tan x that passes through (Pi, 0).

Original entry on oeis.org

2, 5, 5, 7, 0, 1, 5, 6, 1, 4, 2, 4, 1, 3, 5, 8, 5, 2, 6, 0, 1, 3, 6, 6, 3, 5, 4, 1, 9, 0, 6, 7, 7, 1, 3, 7, 9, 6, 9, 9, 9, 8, 9, 0, 8, 9, 7, 8, 1, 2, 2, 8, 7, 7, 1, 8, 6, 6, 8, 9, 0, 4, 7, 4, 9, 1, 3, 7, 0, 4, 0, 1, 1, 5, 5, 6, 7, 8, 6, 6, 2, 0, 0, 5, 1, 2
Offset: 1

Views

Author

Clark Kimberling, Jun 15 2020

Keywords

Comments

Let T be the branch of the graph of y = tan x that passes through (Pi,0). There is a unique point (u,v) on T that is closer to (0,0) than any other point on T. Let d = distance between (u,v) and (0,0).
The first code in the Mathematica section gives
u = 2.319805307509200010738867057136510870483647988277... ;
v = -1.07556133564118881053529612226074179471679754375... ;
d = 2.557015614241358526013663541906771379699989089781... .
The second code shows (u,v) as the intersection of T and the circle centered at (0,0) with radius d.
The third code shows minimal distance-to-origin points on 16 branches of the tangent function.

Examples

			2.557015614241358526013663541906771379699989089781...
		

Crossrefs

Programs

  • Mathematica
    (* This code computes (x,y) coordinates and the minimal distance. *)
    x = x /. FindRoot[FullSimplify[D[Sqrt[x^2 + Tan[x]^2], x]] == 0, {x, 2},
       WorkingPrecision -> 150]
    y = Tan[x]
    d = Sqrt[x^2 + Tan[x]^2]
    RealDigits[x][[1]]
    RealDigits[y][[1]]
    RealDigits[d][[1]]
    (* Peter J. C. Moses, May 04 2020 *)
    (* This code shows the two points on the graph of y = tan x and on a circle whose radius is the minimal distance. *)
    g1 = Plot[Tan[x], {x, -2 \[Pi], 2 \[Pi]}, AspectRatio -> 1];
    g2 = Graphics[Circle[{0, 0}, Sqrt[Tan[#]^2 + #^2] &[x /. FindRoot[
           FullSimplify[D[Sqrt[x^2 + Tan[x]^2], x]] == 0, {x, 2},
           WorkingPrecision -> 30]]]];
    Show[g1, g2]
    (* Peter J. C. Moses, May 04 2020 *)
    (* This code shows minimal distance points on 16 branches of the tangent function. *)
    max = 25;
    ptX = Table[x /. FindRoot[# == 0, {x, nn}, WorkingPrecision -> 10], {nn, 2,
          max, Pi}] &[FullSimplify[D[Sqrt[x^2 + Tan[x]^2], x]]];
    Show[Plot[Tan[x], {x, -#, #}, PlotRange -> {-#, #}] &[max],
       Map[Graphics[{Red, Circle[{0, 0}, Sqrt[Tan[#]^2 + #^2]]}] &, #],
       Map[Graphics[{PointSize[Large], Point[-{#, Tan[#]}], Point[{0, 0}],
            Point[{#, Tan[#]}]}] &, #], AspectRatio -> Automatic,
            ImageSize -> 600] &[ptX]
    (* Peter J. C. Moses, May 05 2020 *)

Formula

u = - sin u sec^3 u.
v = tan u.
d = sqrt(u^2 + v^2).
Showing 1-1 of 1 results.