A332527 Decimal expansion of the maximal curvature of the tangent function.
3, 7, 0, 7, 8, 2, 5, 8, 3, 0, 8, 1, 0, 8, 8, 7, 7, 4, 0, 0, 4, 8, 7, 1, 8, 5, 1, 2, 0, 2, 3, 9, 3, 8, 0, 7, 6, 9, 8, 4, 8, 0, 7, 9, 5, 9, 2, 9, 5, 7, 5, 6, 4, 0, 5, 5, 7, 3, 9, 3, 3, 0, 3, 0, 3, 4, 1, 3, 4, 2, 7, 6, 5, 8, 3, 6, 5, 5, 4, 7, 8, 5, 1, 6, 5, 1
Offset: 0
Examples
maximal curvature: K = 0.370782583081088774004871851202393807698480795929575640...
Crossrefs
Cf. A332527.
Programs
-
Mathematica
centMin = {xMin = ArcCos[Root[3 - 4 #1^2 - 3 #1^4 + 2 #1^6 &, 3]], Root[-2 - 2 #1^2 + 5 #1^4 + 3 #1^6 &, 2]}; {centOsc, rOsc} = {{-(1/2) Cot[#1] (1 + Sec[#1]^4) + #1, Cot[#1] - 1/4 Sin[2 #1] + (3 Tan[#1])/2}, Sqrt[1/4 Cos[#1]^4 Cot[#1]^2 (1 + Sec[#1]^4)^3]} &[xMin]; Show[Plot[{Tan[x], (-# Sec[#]^2) + x Sec[#]^2 + Tan[#], {(# Cos[#]^2) - x Cos[#]^2 + Tan[#]}}, {x, -5, 3}, AspectRatio -> Automatic, ImageSize -> 500, PlotRange -> {-2, 4}], Graphics[{PointSize[Medium], Circle[centOsc, rOsc], Point[centOsc], Point[centMin]}]] &[xMin] N[centOsc, 100] (* center of osculating circle *) N[rOsc, 100] (* radius of osculating circle *) N[{ArcCos[Root[3 - 4 #1^2 - 3 #1^4 + 2 #1^6 &, 3]], Root[-2 - 2 #1^2 + 5 #1^4 + 3 #1^6 &, 2]}, 100] (* maximal curvature point *) N[1/rOsc, 100] (* curvature *) (* Peter J. C. Moses, May 07 2020 *)
Comments