A332528 Decimal expansion of the maximal curvature of the secant function.
1, 1, 1, 5, 3, 9, 8, 6, 1, 6, 3, 6, 7, 0, 8, 4, 7, 8, 8, 5, 2, 3, 6, 7, 2, 0, 2, 2, 8, 1, 3, 2, 6, 6, 5, 7, 6, 5, 4, 7, 5, 1, 2, 0, 8, 1, 8, 4, 5, 3, 1, 7, 7, 3, 7, 4, 0, 4, 4, 4, 1, 0, 3, 3, 5, 8, 5, 6, 3, 4, 6, 7, 6, 8, 6, 4, 7, 3, 9, 2, 1, 7, 4, 3, 2, 3
Offset: 0
Crossrefs
Cf. A332527.
Programs
-
Mathematica
maxC = ArcCos[ Sqrt[(2*(2 - Sqrt[31]*Cos[(Pi + ArcTan[(9*Sqrt[302])/73])/3]))/3]]; centerMaxC = {(-3*x + x*Cos[2*x] + Sin[2*x] + 2*Tan[x]^3)/(-3 + Cos[2*x]), -((Cos[x]*Cos[2*x])/(-3 + Cos[2*x])) + (3*Sec[x])/ 2} /. x -> maxC; rMin = (Sqrt[(7 + Cos[4 x])^3] Sec[x]^3)/(Sqrt[2] 8 (3 - Cos[2 x])) /. x -> maxC; Show[Plot[Sec[x], {x, 0 - 3/2, 2}], Graphics[{PointSize[Large], Red, Point[centerMaxC], Point[{maxC, Sec[maxC]}], Circle[centerMaxC, rMin], Line[{centerMaxC, {maxC, Sec[maxC]}}]}], AspectRatio -> Automatic, PlotRange -> {0, 2}] x = ArcCos[Sqrt[(2*(2 - Sqrt[31]*Cos[(Pi + ArcTan[(9*Sqrt[302])/73])/3]))/ 3]]; (* maximal curvature occurs at (x, sec x) *) {N[x, 150], N[Sec[x], 150]} {cx, cy} = {(-3*x + x*Cos[2*x] + Sin[2*x] + 2*Tan[x]^3)/(-3 + Cos[2*x]), -((Cos[x]*Cos[2*x])/(-3 + Cos[2*x])) + (3*Sec[x])/2}; (* center of osculating circle *) {N[cx, 150], N[cy, 150]} r = N[Sqrt[(x - cx)^2 + (Sec[x] - cy)^2], 150] (* radius of curvature *) 1/r (* curvature *) kr = RealDigits[1/r][[1]] (* Peter J. C. Moses, May 07 2020 *)
Comments