cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332528 Decimal expansion of the maximal curvature of the secant function.

Original entry on oeis.org

1, 1, 1, 5, 3, 9, 8, 6, 1, 6, 3, 6, 7, 0, 8, 4, 7, 8, 8, 5, 2, 3, 6, 7, 2, 0, 2, 2, 8, 1, 3, 2, 6, 6, 5, 7, 6, 5, 4, 7, 5, 1, 2, 0, 8, 1, 8, 4, 5, 3, 1, 7, 7, 3, 7, 4, 0, 4, 4, 4, 1, 0, 3, 3, 5, 8, 5, 6, 3, 4, 6, 7, 6, 8, 6, 4, 7, 3, 9, 2, 1, 7, 4, 3, 2, 3
Offset: 0

Views

Author

Clark Kimberling, Jun 21 2020

Keywords

Comments

The maximal curvature of the graph of y = sec x occurs at two points (x,y) on every branch. One of the points has y > 0. Let T be the branch passes through (0,1) and lies in the first quadrant. The maximal curvature, K, occurs at a point (u,v):
u = 0.469952511643664772466732023628843853062603014858623133147...
v = 1.121592022152314185447110000884194699579672726085862403985...
K = 1.11539861636708478852367202281326657654751208184531773740...
The osculating circle at (u,v) has
center = (x,y) = (0.02618081309772817465,,,, 1.900598757881329358432040976889617...).
radius = 1/K = 0.896540470219566446984489512566284091376257661443...
maximal curvature: K = 1.11539861636708478852367202281326657654751208184531773740...

Crossrefs

Cf. A332527.

Programs

  • Mathematica
    maxC = ArcCos[   Sqrt[(2*(2 - Sqrt[31]*Cos[(Pi + ArcTan[(9*Sqrt[302])/73])/3]))/3]];
    centerMaxC = {(-3*x + x*Cos[2*x] + Sin[2*x] + 2*Tan[x]^3)/(-3 +
           Cos[2*x]), -((Cos[x]*Cos[2*x])/(-3 + Cos[2*x])) + (3*Sec[x])/
          2} /. x -> maxC;
    rMin = (Sqrt[(7 + Cos[4 x])^3] Sec[x]^3)/(Sqrt[2] 8 (3 - Cos[2 x])) /. x -> maxC;
    Show[Plot[Sec[x], {x, 0 - 3/2, 2}],
    Graphics[{PointSize[Large], Red, Point[centerMaxC],
       Point[{maxC, Sec[maxC]}], Circle[centerMaxC, rMin],
       Line[{centerMaxC, {maxC, Sec[maxC]}}]}], AspectRatio -> Automatic,
    PlotRange -> {0, 2}]
    x = ArcCos[Sqrt[(2*(2 - Sqrt[31]*Cos[(Pi + ArcTan[(9*Sqrt[302])/73])/3]))/
        3]];  (* maximal curvature occurs at (x, sec x) *)
    {N[x, 150], N[Sec[x], 150]}
    {cx, cy} = {(-3*x + x*Cos[2*x] + Sin[2*x] + 2*Tan[x]^3)/(-3 + Cos[2*x]), -((Cos[x]*Cos[2*x])/(-3 + Cos[2*x])) + (3*Sec[x])/2}; (* center of osculating circle *)
    {N[cx, 150], N[cy, 150]}
    r = N[Sqrt[(x - cx)^2 + (Sec[x] - cy)^2], 150] (* radius of curvature *)
    1/r  (* curvature *)
    kr = RealDigits[1/r][[1]]
    (* Peter J. C. Moses, May 07 2020 *)