A332567 T(n,k) is the k-th partition of n in graded reverse lexicographic ordering (A080577) encoded as concatenation of parts which are represented in (zeroless) bijective base-9 numeration (A052382) and separated by zeros; triangle T(n,k), n >= 0, 1 <= k <= A000041(n), read by rows.
0, 1, 2, 101, 3, 201, 10101, 4, 301, 202, 20101, 1010101, 5, 401, 302, 30101, 20201, 2010101, 101010101, 6, 501, 402, 40101, 303, 30201, 3010101, 20202, 2020101, 201010101, 10101010101, 7, 601, 502, 50101, 403, 40201, 4010101, 30301, 30202, 3020101, 301010101
Offset: 0
Examples
T(6,6) = 30201 encodes the 6th partition of 6: [3,2,1]. T(10,1) = 11 encodes the 1st partition of 10: [10]. T(23,23) = 18040101 encodes the 23rd partition of 23: [17,4,1,1]. Triangle T(n,k) begins: 0; 1; 2, 101; 3, 201, 10101; 4, 301, 202, 20101, 1010101; 5, 401, 302, 30101, 20201, 2010101, 101010101; 6, 501, 402, 40101, 303, 30201, 3010101, 20202, 2020101, ... 7, 601, 502, 50101, 403, 40201, 4010101, 30301, 30202, ... 8, 701, 602, 60101, 503, 50201, 5010101, 404, 40301, 40202, ... 9, 801, 702, 70101, 603, 60201, 6010101, 504, 50301, 50202, ... 11, 901, 802, 80101, 703, 70201, 7010101, 604, 60301, 60202, ... ...
Links
- Alois P. Heinz, Rows n = 0..34, flattened
- Wikipedia, Bijective numeration
- Wikipedia, Partition (number theory)
Crossrefs
Programs
-
Maple
g:= proc(n) option remember; local d, m, l; m, l:= n, ""; while m>0 do d:= irem(m, 9, 'm'); if d=0 then d:=9; m:= m-1 fi; l:= d, l od; parse(cat(l)) end: b:= (n, i)-> `if`(n=0, [""], `if`(i<1, [], [map(x-> cat( 0, g(i), x), b(n-i, min(n-i, i)))[], b(n, i-1)[]])): T:= n-> map(x-> parse(cat(0, x)), b(n$2))[]: seq(T(n), n=0..10);
Comments