cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A332595 Number of triangular regions in a "frame" of size n X n (see Comments in A331776 for definition), divided by 4.

Original entry on oeis.org

1, 12, 32, 72, 128, 232, 368, 576, 832, 1232, 1712, 2328, 3040, 4040, 5184, 6616, 8224, 10248, 12496, 15144, 18048, 21688, 25664, 30184, 35072, 41000, 47392, 54608, 62336, 71088, 80416, 90864, 101952, 114832, 128480, 143352, 159040, 176984, 195888, 216424, 237984, 261624, 286384, 313184, 341184, 372496, 405184
Offset: 1

Views

Author

Keywords

Comments

See A331776 for many other illustrations.
Theorem. Let z_2(n) = Sum_{i, j = 1..n, gcd(i,j)=2} (n+1-i)*(n+1-j) (this is A331761). Then, for n >= 2, a(n) = 2*(z_2(n) + (n+3)*(n-1)). - Scott R. Shannon and N. J. A. Sloane, Mar 06 2020

Crossrefs

Programs

  • Maple
    V := proc(m,n,q) local a,i,j; a:=0;
    for i from 1 to m do for j from 1 to n do
    if gcd(i,j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
    f := n -> if n=1 then 4 else 8*n^2 + 16*n - 24 + 8*V(n,n,2); fi;
    [seq(f(n)/4, n=1..60)]; # N. J. A. Sloane, Mar 09 2020

Extensions

More terms from N. J. A. Sloane, Mar 09 2020

A332610 Triangle read by rows: T(m,n) = number of triangular regions in a "frame" of size m X n with m >= n >= 1 (see Comments in A331457 for definition of frame).

Original entry on oeis.org

4, 14, 48, 32, 102, 128, 70, 192, 204, 288, 124, 326, 312, 396, 512, 226, 524, 516, 600, 716, 928, 360, 802, 784, 868, 984, 1196, 1472, 566, 1192, 1196, 1280, 1396, 1608, 1884, 2304, 820, 1634, 1704, 1788, 1904, 2116, 2392, 2812, 3328, 1218, 2296, 2500, 2584, 2700, 2912, 3188, 3608, 4124, 4928
Offset: 1

Views

Author

Keywords

Comments

See A331457 for illustrations.

Examples

			Triangle begins:
[4],
[14, 48],
[32, 102, 128],
[70, 192, 204, 288],
[124, 326, 312, 396, 512],
[226, 524, 516, 600, 716, 928],
[360, 802, 784, 868, 984, 1196, 1472],
[566, 1192, 1196, 1280, 1396, 1608, 1884, 2304],
[820, 1634, 1704, 1788, 1904, 2116, 2392, 2812, 3328],
[1218, 2296, 2500, 2584, 2700, 2912, 3188, 3608, 4124, 4928],
[1696, 3074, 3456, 3540, 3656, 3868, 4144, 4564, 5080, 5884, 6848],
[2310, 4052, 4684, 4768, 4884, 5096, 5372, 5792, 6308, 7112, 8076, 9312],
...
		

Crossrefs

Formula

The first column is A324042, for which there is an explicit formula.
No formula is known for column 2, which is A332606.
For m>=n>=3 we have the (new) theorem that T(m,n) = 4*(m^2+n^2)+12*n+4*m-24 + 4*V(m,m,2)+4*V(n,n,2), where V(m,n,q) = Sum_{i = 1..m, j = 1..n, gcd(i,j)=q} (m+1-i)*(n+1-j).

A332611 Triangle read by rows: T(m,n) = number of quadrilateral regions in a "frame" of size m X n with m >= n >= 1 (see Comments in A331457 for definition of frame).

Original entry on oeis.org

0, 2, 8, 14, 36, 80, 34, 92, 144, 208, 90, 194, 280, 356, 504, 154, 336, 432, 520, 680, 856, 288, 554, 724, 824, 996, 1184, 1512, 462, 812, 1096, 1208, 1392, 1592, 1932, 2352, 742, 1314, 1680, 1804, 2000, 2212, 2564, 2996, 3640, 1038, 1756, 2296, 2432, 2640, 2864, 3228, 3672, 4328, 5016
Offset: 1

Views

Author

Keywords

Comments

See A331457 for illustrations.

Examples

			Triangle begins:
[0],
[2, 8],
[14, 36, 80],
[34, 92, 144, 208],
[90, 194, 280, 356, 504],
[154, 336, 432, 520, 680, 856],
[288, 554, 724, 824, 996, 1184, 1512],
[462, 812, 1096, 1208, 1392, 1592, 1932, 2352],
[742, 1314, 1680, 1804, 2000, 2212, 2564, 2996, 3640],
[1038, 1756, 2296, 2432, 2640, 2864, 3228, 3672, 4328, 5016],
[1512, 2508, 3268, 3416, 3636, 3872, 4248, 4704, 5372, 6072, 7128],
[2074, 3252, 4416, 4576, 4808, 5056, 5444, 5912, 6592, 7304, 8372, 9616],
....
		

Crossrefs

Formula

The first column is A324043, for which there is an explicit formula.
No formula is known for column 2, which is A332607.
For m>=n>=3 we have the (new) theorem that T(m,n) = 4*(3*m*n-m-4*n) + 2*(V(m,m,1)-2*V(m,m,2)-m^2-4*m+6) + 2*(V(n,n,1)-2*V(n,n,2)-n^2-4*n+6) where V(m,n,q) = Sum_{i = 1..m, j = 1..n, gcd(i,j)=q} (m+1-i)*(n+1-j).
Showing 1-3 of 3 results.