A332600
Triangle read by rows: T(n,k) = number of edges in a "frame" of size n X k (see Comments in A331457 for definition).
Original entry on oeis.org
8, 28, 92, 80, 240, 360, 178, 508, 604, 860, 372, 944, 1040, 1320, 1792, 654, 1548, 1652, 1956, 2452, 3124, 1124, 2520, 2640, 2968, 3488, 4184, 5256, 1782, 3754, 4004, 4356, 4900, 5620, 6716, 8188, 2724, 5392, 5936, 6312, 6880, 7624, 8744, 10240, 12304, 3914, 7528, 8364, 8764, 9356, 10124, 11268, 12788, 14876, 17460
Offset: 1
Triangle begins:
[8],
[28, 92],
[80, 240, 360],
[178, 508, 604, 860],
[372, 944, 1040, 1320, 1792],
[654, 1548, 1652, 1956, 2452, 3124],
[1124, 2520, 2640, 2968, 3488, 4184, 5256],
[1782, 3754, 4004, 4356, 4900, 5620, 6716, 8188],
[2724, 5392, 5936, 6312, 6880, 7624, 8744, 10240, 12304],
[3914, 7528, 8364, 8764, 9356, 10124, 11268, 12788, 14876, 17460],
...
A331457
Triangle read by rows: T(n,k) = number of regions in a "frame" of size n X k (see Comments for definition).
Original entry on oeis.org
4, 16, 56, 46, 142, 208, 104, 296, 348, 496, 214, 544, 592, 752, 1016, 380, 892, 948, 1120, 1396, 1784, 648, 1436, 1508, 1692, 1980, 2380, 2984, 1028, 2136, 2292, 2488, 2788, 3200, 3816, 4656, 1562, 3066, 3384, 3592, 3904, 4328, 4956, 5808, 6968, 2256, 4272, 4796, 5016, 5340, 5776, 6416, 7280, 8452, 9944
Offset: 1
Triangle begins:
4,
16,56,
46,142,208,
104,296,348,496,
214,544,592,752,1016
380,892,948,1120,1396,1784
648,1436,1508,1692,1980,2380,2984
1028,2136,2292,2488,2788,3200,3816,4656
1562,3066,3384,3592,3904,4328,4956,5808,6968
2256,4272,4796,5016,5340,5776,6416,7280,8452,9944
- Scott R. Shannon, Colored illustration for T(1,1) = 4.
- Scott R. Shannon, Colored illustration for T(2,2) = 56.
- Scott R. Shannon, Colored illustration for T(3,3) = 208.
- Scott R. Shannon, Colored illustration for T(4,4) = 496.
- Scott R. Shannon, Colored illustration for T(5,5) = 1016.
- Scott R. Shannon, Colored illustration for T(6,6) = 1784.
- Scott R. Shannon, Colored illustration for T(7,4) = 1692.
- Scott R. Shannon, Colored illustration for T(10,6) = 5776.
- N. J. A. Sloane, Illustration for T(3,3) = 208.
Cf.
A332599 (triangle giving numbers of vertices) and
A332600 (edges).
Showing 1-2 of 2 results.
Comments