A332599
Triangle read by rows: T(n,k) = number of vertices in a "frame" of size n X k (see Comments in A331457 for definition).
Original entry on oeis.org
5, 13, 37, 35, 99, 152, 75, 213, 256, 364, 159, 401, 448, 568, 776, 275, 657, 704, 836, 1056, 1340, 477, 1085, 1132, 1276, 1508, 1804, 2272, 755, 1619, 1712, 1868, 2112, 2420, 2900, 3532, 1163, 2327, 2552, 2720, 2976, 3296, 3788, 4432, 5336, 1659, 3257, 3568, 3748, 4016, 4348, 4852, 5508, 6424, 7516
Offset: 1
Triangle begins:
[5],
[13, 37],
[35, 99, 152],
[75, 213, 256, 364],
[159, 401, 448, 568, 776],
[275, 657, 704, 836, 1056, 1340],
[477, 1085, 1132, 1276, 1508, 1804, 2272],
[755, 1619, 1712, 1868, 2112, 2420, 2900, 3532],
[1163, 2327, 2552, 2720, 2976, 3296, 3788, 4432, 5336],
[1659, 3257, 3568, 3748, 4016, 4348, 4852, 5508, 6424, 7516],
...
A332600
Triangle read by rows: T(n,k) = number of edges in a "frame" of size n X k (see Comments in A331457 for definition).
Original entry on oeis.org
8, 28, 92, 80, 240, 360, 178, 508, 604, 860, 372, 944, 1040, 1320, 1792, 654, 1548, 1652, 1956, 2452, 3124, 1124, 2520, 2640, 2968, 3488, 4184, 5256, 1782, 3754, 4004, 4356, 4900, 5620, 6716, 8188, 2724, 5392, 5936, 6312, 6880, 7624, 8744, 10240, 12304, 3914, 7528, 8364, 8764, 9356, 10124, 11268, 12788, 14876, 17460
Offset: 1
Triangle begins:
[8],
[28, 92],
[80, 240, 360],
[178, 508, 604, 860],
[372, 944, 1040, 1320, 1792],
[654, 1548, 1652, 1956, 2452, 3124],
[1124, 2520, 2640, 2968, 3488, 4184, 5256],
[1782, 3754, 4004, 4356, 4900, 5620, 6716, 8188],
[2724, 5392, 5936, 6312, 6880, 7624, 8744, 10240, 12304],
[3914, 7528, 8364, 8764, 9356, 10124, 11268, 12788, 14876, 17460],
...
A332610
Triangle read by rows: T(m,n) = number of triangular regions in a "frame" of size m X n with m >= n >= 1 (see Comments in A331457 for definition of frame).
Original entry on oeis.org
4, 14, 48, 32, 102, 128, 70, 192, 204, 288, 124, 326, 312, 396, 512, 226, 524, 516, 600, 716, 928, 360, 802, 784, 868, 984, 1196, 1472, 566, 1192, 1196, 1280, 1396, 1608, 1884, 2304, 820, 1634, 1704, 1788, 1904, 2116, 2392, 2812, 3328, 1218, 2296, 2500, 2584, 2700, 2912, 3188, 3608, 4124, 4928
Offset: 1
Triangle begins:
[4],
[14, 48],
[32, 102, 128],
[70, 192, 204, 288],
[124, 326, 312, 396, 512],
[226, 524, 516, 600, 716, 928],
[360, 802, 784, 868, 984, 1196, 1472],
[566, 1192, 1196, 1280, 1396, 1608, 1884, 2304],
[820, 1634, 1704, 1788, 1904, 2116, 2392, 2812, 3328],
[1218, 2296, 2500, 2584, 2700, 2912, 3188, 3608, 4124, 4928],
[1696, 3074, 3456, 3540, 3656, 3868, 4144, 4564, 5080, 5884, 6848],
[2310, 4052, 4684, 4768, 4884, 5096, 5372, 5792, 6308, 7112, 8076, 9312],
...
A332611
Triangle read by rows: T(m,n) = number of quadrilateral regions in a "frame" of size m X n with m >= n >= 1 (see Comments in A331457 for definition of frame).
Original entry on oeis.org
0, 2, 8, 14, 36, 80, 34, 92, 144, 208, 90, 194, 280, 356, 504, 154, 336, 432, 520, 680, 856, 288, 554, 724, 824, 996, 1184, 1512, 462, 812, 1096, 1208, 1392, 1592, 1932, 2352, 742, 1314, 1680, 1804, 2000, 2212, 2564, 2996, 3640, 1038, 1756, 2296, 2432, 2640, 2864, 3228, 3672, 4328, 5016
Offset: 1
Triangle begins:
[0],
[2, 8],
[14, 36, 80],
[34, 92, 144, 208],
[90, 194, 280, 356, 504],
[154, 336, 432, 520, 680, 856],
[288, 554, 724, 824, 996, 1184, 1512],
[462, 812, 1096, 1208, 1392, 1592, 1932, 2352],
[742, 1314, 1680, 1804, 2000, 2212, 2564, 2996, 3640],
[1038, 1756, 2296, 2432, 2640, 2864, 3228, 3672, 4328, 5016],
[1512, 2508, 3268, 3416, 3636, 3872, 4248, 4704, 5372, 6072, 7128],
[2074, 3252, 4416, 4576, 4808, 5056, 5444, 5912, 6592, 7304, 8372, 9616],
....
A331776
Number of regions in a "frame" of size n X n (see Comments for definition).
Original entry on oeis.org
4, 56, 208, 496, 1016, 1784, 2984, 4656, 6968, 9944, 13976, 18928, 25360, 33128, 42488, 53600, 67232, 82904, 101744, 123232, 147896, 175784, 208296, 244416, 285600, 331352, 382608, 439008, 502776, 571912, 649480, 734176, 826880, 927416, 1037288, 1155152, 1284992
Offset: 1
- Jinyuan Wang, Table of n, a(n) for n = 1..1000
- Scott R. Shannon, Colored illustration for a(1) = 4
- Scott R. Shannon, Colored illustration for a(2) = 56
- Scott R. Shannon, Colored illustration for a(3) = 208
- Scott R. Shannon, Colored illustration for a(4) = 496
- Scott R. Shannon, Colored illustration for a(5) = 1016
- Scott R. Shannon, Colored illustration for a(6) = 1784
- Scott R. Shannon, Colored illustration for a(7) = 2984
- Scott R. Shannon, Colored illustration for a(8) = 4656
- Scott R. Shannon, Colored illustration for a(8) = 4656 (Another version)
- Zach Shannon, Illustration for a(8) = 4656 used as a frame for the OEIS logo
- Zach Shannon, Illustration for a(8) = 4656 used as a frame for the OEIS logo (detail)
- N. J. A. Sloane, Illustration for a(3) = 208
The analogous sequence for an n X n block of squares (if the center block is not removed) is
A331452.
-
# First define z(n) = A115004
z := proc(n)
local a, b, r ;
r := 0 ;
for a from 1 to n do
for b from 1 to n do
if igcd(a, b) = 1 then
r := r+(n+1-a)*(n+1-b);
end if;
end do:
end do:
r ;
end proc:
A331776 := n -> if n=1 then 4 else 4*z(n)+16*n^2 - 20*n; fi;
[seq(A331776(n),n=1..40)]; # N. J. A. Sloane, Mar 09 2020
-
a(n) = 4*sum(i=1, n, sum(j=1, n, if(gcd(i, j)==1, (n+1-i)*(n+1-j), 0))) + 16*n^2 - 20*n + 4*(n==1); \\ Jinyuan Wang, Aug 07 2021
-
from sympy import totient
def A331776(n): return 4 if n == 1 else 20*n*(n-1) + 4*sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2,n+1)) # Chai Wah Wu, Aug 16 2021
A332606
Number of triangles in the graph formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
Original entry on oeis.org
14, 48, 102, 192, 326, 524, 802, 1192, 1634, 2296, 3074, 4052, 5246, 6740, 8398, 10440, 12770, 15512, 18782, 22384, 26386, 31204, 36482, 42232, 48826, 56508, 64318, 73356, 83366, 93996, 106010, 118788, 132634, 148600, 164814, 182648, 201998, 223172, 245634
Offset: 1
Cf.
A331452,
A331453,
A331454,
A331763,
A331765,
A331766,
A332599,
A332600,
A331457,
A332607,
A332608,
A332609.
A332607
Number of quadrilaterals in the graph formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
Original entry on oeis.org
2, 8, 36, 92, 194, 336, 554, 812, 1314, 1756, 2508, 3252, 4348, 5464, 7054, 8760, 11050, 13324, 16162, 19256, 23188, 27120, 32098, 37396, 43456, 49516, 57608, 65440, 74670, 84388, 95674, 107656, 120990, 133996, 150144, 166424, 185090, 203960, 224926, 247120
Offset: 1
Cf.
A331452,
A331453,
A331454,
A331763,
A331765,
A331766,
A332599,
A332600,
A331457,
A332606,
A332608,
A332609.
A332608
Number of pentagons in the graph formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
Original entry on oeis.org
0, 0, 4, 12, 24, 28, 80, 128, 112, 200, 236, 356, 472, 652, 656, 940, 1040, 1300, 1600, 1948, 2048, 2588, 2856, 3260, 3716, 4492, 4572, 5324, 5904, 6508, 7200, 8144, 8664, 10296, 10548, 11664, 12580, 13860, 14596, 15980, 17312, 18516, 19692, 22152, 22912
Offset: 1
Cf.
A331452,
A331453,
A331454,
A331763,
A331765,
A331766,
A332599,
A332600,
A331457,
A332606,
A332607,
A332609.
A332609
Maximum number of edges in any cell in the graph formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
Original entry on oeis.org
4, 4, 5, 5, 5, 6, 5, 6, 8, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1
Cf.
A331452,
A331453,
A331454,
A331763,
A331765,
A331766,
A332599,
A332600,
A331457,
A332606,
A332607,
A332608.
Showing 1-9 of 9 results.
Comments