A332596
Number of quadrilateral regions in a "frame" of size n X n (see Comments in A331776 for definition), divided by 8.
Original entry on oeis.org
0, 1, 10, 26, 63, 107, 189, 294, 455, 627, 891, 1202, 1650, 2121, 2719, 3392, 4292, 5239, 6470, 7832, 9463, 11129, 13205, 15460, 18164, 20919, 24130, 27572, 31679, 35945, 40977, 46340, 52384, 58511, 65421, 72718, 81104, 89589, 98989, 108860, 120062, 131551
Offset: 1
-
V := proc(m, n, q) local a, i, j; a:=0;
for i from 1 to m do for j from 1 to n do
if gcd(i, j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
f := n -> if n=1 then 0 else 8*n^2 - 36*n + 24 + 4*V(n,n,1) 8*V(n, n, 2); fi;
[seq(f(n)/8, n=1..60)]; # N. J. A. Sloane, Mar 10 2020
-
a(n) = sum(i=1, n, sum(j=1, n, if(gcd(i, j)==1, (n+1-i)*(n+1-j), 0)))/2 - sum(i=1, n, sum(j=1, n, if(gcd(i, j)==2, (n+1-i)*(n+1-j), 0))) + n^2 - 9*n/2 + 3; \\ Jinyuan Wang, Aug 07 2021
-
from sympy import totient
def A332596(n): return 0 if n == 1 else ((n-1)*(n-4) - sum(totient(i)*(n+1-i)*(2*n+2-7*i) for i in range(2,n//2+1)) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1,n+1)))//2 # Chai Wah Wu, Aug 16 2021
Original entry on oeis.org
1, 14, 52, 124, 254, 446, 746, 1164, 1742, 2486, 3494, 4732, 6340, 8282, 10622, 13400, 16808, 20726, 25436, 30808, 36974, 43946, 52074, 61104, 71400, 82838, 95652, 109752, 125694, 142978, 162370, 183544, 206720, 231854, 259322, 288788, 321248, 356162, 393866, 434144, 478108, 524726, 575408, 629352, 686846, 747914
Offset: 1
A332595
Number of triangular regions in a "frame" of size n X n (see Comments in A331776 for definition), divided by 4.
Original entry on oeis.org
1, 12, 32, 72, 128, 232, 368, 576, 832, 1232, 1712, 2328, 3040, 4040, 5184, 6616, 8224, 10248, 12496, 15144, 18048, 21688, 25664, 30184, 35072, 41000, 47392, 54608, 62336, 71088, 80416, 90864, 101952, 114832, 128480, 143352, 159040, 176984, 195888, 216424, 237984, 261624, 286384, 313184, 341184, 372496, 405184
Offset: 1
-
V := proc(m,n,q) local a,i,j; a:=0;
for i from 1 to m do for j from 1 to n do
if gcd(i,j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
f := n -> if n=1 then 4 else 8*n^2 + 16*n - 24 + 8*V(n,n,2); fi;
[seq(f(n)/4, n=1..60)]; # N. J. A. Sloane, Mar 09 2020
A332597
Number of edges in a "frame" of size n X n (see Comments in A331776 for definition).
Original entry on oeis.org
8, 92, 360, 860, 1792, 3124, 5256, 8188, 12304, 17460, 24568, 33244, 44688, 58228, 74664, 94028, 118080, 145380, 178568, 216252, 259776, 308276, 365352, 428556, 501152, 580804, 670536, 768908, 880992, 1001764, 1138248, 1286748, 1449984, 1625300, 1817752, 2023740, 2252048, 2495476, 2759304, 3040460, 3349056
Offset: 1
-
V := proc(m, n, q) local a, i, j; a:=0;
for i from 1 to m do for j from 1 to n do
if gcd(i, j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
f := n -> if n=1 then 8 else 28*n^2 - 44*n + 8 + 8*V(n,n,1) - 4*V(n, n, 2); fi;
[seq(f(n), n=1..50)]; # N. J. A. Sloane, Mar 10 2020
-
from sympy import totient
def A332597(n): return 8 if n == 1 else 4*(n-1)*(8*n-1) + 8*sum(totient(i)*(n+1-i)*(n+i+1) for i in range(2,n//2+1)) + 8*sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1,n+1)) # Chai Wah Wu, Aug 16 2021
A332598
Number of vertices in a "frame" of size n X n (see Comments in A331776 for definition).
Original entry on oeis.org
5, 27, 152, 364, 776, 1340, 2272, 3532, 5336, 7516, 10592, 14316, 19328, 25100, 32176, 40428, 50848, 62476, 76824, 93020, 111880, 132492, 157056, 184140, 215552, 249452, 287928, 329900, 378216, 429852, 488768, 552572, 623104, 697884, 780464, 868588, 967056
Offset: 1
-
V := proc(m, n, q) local a, i, j; a:=0;
for i from 1 to m do for j from 1 to n do
if gcd(i, j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
f := n -> if n=1 then 5 elif n=2 then 27 else 12*n^2 - 24*n + 8 + 4*V(n,n,1) - 4*V(n, n, 2); fi;
[seq(f(n), n=1..50)]; # N. J. A. Sloane, Mar 10 2020
-
a(n) = if(n<3, 22*n - 17, 4*sum(i=1, n, sum(j=1, n, if(gcd(i, j)==1, (n+1-i)*(n+1-j), 0))) - 4*sum(i=1, n, sum(j=1, n, if(gcd(i, j)==2, (n+1-i)*(n+1-j), 0))) + 12*n^2 - 24*n + 8); \\ Jinyuan Wang, Aug 07 2021
-
from sympy import totient
def A332598(n): return 22*n-17 if n <= 2 else 4*(n-1)*(3*n-1) + 12*sum(totient(i)*(n+1-i)*i for i in range(2,n//2+1)) + 4*sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1,n+1)) # Chai Wah Wu, Aug 16 2021
A332599
Triangle read by rows: T(n,k) = number of vertices in a "frame" of size n X k (see Comments in A331457 for definition).
Original entry on oeis.org
5, 13, 37, 35, 99, 152, 75, 213, 256, 364, 159, 401, 448, 568, 776, 275, 657, 704, 836, 1056, 1340, 477, 1085, 1132, 1276, 1508, 1804, 2272, 755, 1619, 1712, 1868, 2112, 2420, 2900, 3532, 1163, 2327, 2552, 2720, 2976, 3296, 3788, 4432, 5336, 1659, 3257, 3568, 3748, 4016, 4348, 4852, 5508, 6424, 7516
Offset: 1
Triangle begins:
[5],
[13, 37],
[35, 99, 152],
[75, 213, 256, 364],
[159, 401, 448, 568, 776],
[275, 657, 704, 836, 1056, 1340],
[477, 1085, 1132, 1276, 1508, 1804, 2272],
[755, 1619, 1712, 1868, 2112, 2420, 2900, 3532],
[1163, 2327, 2552, 2720, 2976, 3296, 3788, 4432, 5336],
[1659, 3257, 3568, 3748, 4016, 4348, 4852, 5508, 6424, 7516],
...
A332600
Triangle read by rows: T(n,k) = number of edges in a "frame" of size n X k (see Comments in A331457 for definition).
Original entry on oeis.org
8, 28, 92, 80, 240, 360, 178, 508, 604, 860, 372, 944, 1040, 1320, 1792, 654, 1548, 1652, 1956, 2452, 3124, 1124, 2520, 2640, 2968, 3488, 4184, 5256, 1782, 3754, 4004, 4356, 4900, 5620, 6716, 8188, 2724, 5392, 5936, 6312, 6880, 7624, 8744, 10240, 12304, 3914, 7528, 8364, 8764, 9356, 10124, 11268, 12788, 14876, 17460
Offset: 1
Triangle begins:
[8],
[28, 92],
[80, 240, 360],
[178, 508, 604, 860],
[372, 944, 1040, 1320, 1792],
[654, 1548, 1652, 1956, 2452, 3124],
[1124, 2520, 2640, 2968, 3488, 4184, 5256],
[1782, 3754, 4004, 4356, 4900, 5620, 6716, 8188],
[2724, 5392, 5936, 6312, 6880, 7624, 8744, 10240, 12304],
[3914, 7528, 8364, 8764, 9356, 10124, 11268, 12788, 14876, 17460],
...
A331457
Triangle read by rows: T(n,k) = number of regions in a "frame" of size n X k (see Comments for definition).
Original entry on oeis.org
4, 16, 56, 46, 142, 208, 104, 296, 348, 496, 214, 544, 592, 752, 1016, 380, 892, 948, 1120, 1396, 1784, 648, 1436, 1508, 1692, 1980, 2380, 2984, 1028, 2136, 2292, 2488, 2788, 3200, 3816, 4656, 1562, 3066, 3384, 3592, 3904, 4328, 4956, 5808, 6968, 2256, 4272, 4796, 5016, 5340, 5776, 6416, 7280, 8452, 9944
Offset: 1
Triangle begins:
4,
16,56,
46,142,208,
104,296,348,496,
214,544,592,752,1016
380,892,948,1120,1396,1784
648,1436,1508,1692,1980,2380,2984
1028,2136,2292,2488,2788,3200,3816,4656
1562,3066,3384,3592,3904,4328,4956,5808,6968
2256,4272,4796,5016,5340,5776,6416,7280,8452,9944
- Scott R. Shannon, Colored illustration for T(1,1) = 4.
- Scott R. Shannon, Colored illustration for T(2,2) = 56.
- Scott R. Shannon, Colored illustration for T(3,3) = 208.
- Scott R. Shannon, Colored illustration for T(4,4) = 496.
- Scott R. Shannon, Colored illustration for T(5,5) = 1016.
- Scott R. Shannon, Colored illustration for T(6,6) = 1784.
- Scott R. Shannon, Colored illustration for T(7,4) = 1692.
- Scott R. Shannon, Colored illustration for T(10,6) = 5776.
- N. J. A. Sloane, Illustration for T(3,3) = 208.
Cf.
A332599 (triangle giving numbers of vertices) and
A332600 (edges).
A333031
Number of vertices in an equilateral triangle "frame" of size n (see Comments in A328526 for definition).
Original entry on oeis.org
3, 10, 58, 183, 408, 777, 1323, 2142, 3276, 4773, 6717, 9264, 12507, 16554, 21351, 27090, 34047, 42318, 52008, 63453, 76566, 91371, 108249, 127608, 149487, 173982, 201072, 231225, 265002, 302487, 343857, 389856, 440175, 494670, 553611, 617610, 687477, 763320
Offset: 1
A328526
Number of regions in an equilateral triangle "frame" of size n.
Original entry on oeis.org
1, 12, 75, 249, 543, 1023, 1746, 2814, 4293, 6267, 8868, 12228, 16464, 21774, 28176, 35832, 45066, 56040, 68931, 84033, 101307, 120987, 143574, 169290, 198222, 230790, 267117, 307455, 352437, 402255, 457182, 517986, 584454, 656874, 735708, 821076, 913860
Offset: 1
Showing 1-10 of 13 results.
Comments