A331776 Number of regions in a "frame" of size n X n (see Comments for definition).
4, 56, 208, 496, 1016, 1784, 2984, 4656, 6968, 9944, 13976, 18928, 25360, 33128, 42488, 53600, 67232, 82904, 101744, 123232, 147896, 175784, 208296, 244416, 285600, 331352, 382608, 439008, 502776, 571912, 649480, 734176, 826880, 927416, 1037288, 1155152, 1284992
Offset: 1
Keywords
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..1000
- Scott R. Shannon, Colored illustration for a(1) = 4
- Scott R. Shannon, Colored illustration for a(2) = 56
- Scott R. Shannon, Colored illustration for a(3) = 208
- Scott R. Shannon, Colored illustration for a(4) = 496
- Scott R. Shannon, Colored illustration for a(5) = 1016
- Scott R. Shannon, Colored illustration for a(6) = 1784
- Scott R. Shannon, Colored illustration for a(7) = 2984
- Scott R. Shannon, Colored illustration for a(8) = 4656
- Scott R. Shannon, Colored illustration for a(8) = 4656 (Another version)
- Zach Shannon, Illustration for a(8) = 4656 used as a frame for the OEIS logo
- Zach Shannon, Illustration for a(8) = 4656 used as a frame for the OEIS logo (detail)
- N. J. A. Sloane, Illustration for a(3) = 208
Crossrefs
Programs
-
Maple
# First define z(n) = A115004 z := proc(n) local a, b, r ; r := 0 ; for a from 1 to n do for b from 1 to n do if igcd(a, b) = 1 then r := r+(n+1-a)*(n+1-b); end if; end do: end do: r ; end proc: A331776 := n -> if n=1 then 4 else 4*z(n)+16*n^2 - 20*n; fi; [seq(A331776(n),n=1..40)]; # N. J. A. Sloane, Mar 09 2020
-
PARI
a(n) = 4*sum(i=1, n, sum(j=1, n, if(gcd(i, j)==1, (n+1-i)*(n+1-j), 0))) + 16*n^2 - 20*n + 4*(n==1); \\ Jinyuan Wang, Aug 07 2021
-
Python
from sympy import totient def A331776(n): return 4 if n == 1 else 20*n*(n-1) + 4*sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2,n+1)) # Chai Wah Wu, Aug 16 2021
Formula
For n > 1, a(n) = 20*n*(n-1) + 4*Sum_{i=2..n} (n+1-i)*(2n+2-i)*phi(i). - Chai Wah Wu, Aug 16 2021
Extensions
More terms from N. J. A. Sloane, Mar 09 2020
Comments