A332598 Number of vertices in a "frame" of size n X n (see Comments in A331776 for definition).
5, 27, 152, 364, 776, 1340, 2272, 3532, 5336, 7516, 10592, 14316, 19328, 25100, 32176, 40428, 50848, 62476, 76824, 93020, 111880, 132492, 157056, 184140, 215552, 249452, 287928, 329900, 378216, 429852, 488768, 552572, 623104, 697884, 780464, 868588, 967056
Offset: 1
Keywords
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..1000
- Scott R. Shannon, Colored illustration for a(3) = 152 (there are 152 vertices in this picture).
Programs
-
Maple
V := proc(m, n, q) local a, i, j; a:=0; for i from 1 to m do for j from 1 to n do if gcd(i, j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end; f := n -> if n=1 then 5 elif n=2 then 27 else 12*n^2 - 24*n + 8 + 4*V(n,n,1) - 4*V(n, n, 2); fi; [seq(f(n), n=1..50)]; # N. J. A. Sloane, Mar 10 2020
-
PARI
a(n) = if(n<3, 22*n - 17, 4*sum(i=1, n, sum(j=1, n, if(gcd(i, j)==1, (n+1-i)*(n+1-j), 0))) - 4*sum(i=1, n, sum(j=1, n, if(gcd(i, j)==2, (n+1-i)*(n+1-j), 0))) + 12*n^2 - 24*n + 8); \\ Jinyuan Wang, Aug 07 2021
-
Python
from sympy import totient def A332598(n): return 22*n-17 if n <= 2 else 4*(n-1)*(3*n-1) + 12*sum(totient(i)*(n+1-i)*i for i in range(2,n//2+1)) + 4*sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1,n+1)) # Chai Wah Wu, Aug 16 2021
Formula
For n > 2, a(n) = 4*(n-1)*(3n-1)+12*Sum_{i=2..floor(n/2)} (n+1-i)*i*phi(i) + 4*Sum_{i=floor(n/2)+1..n} (n+1-i)*(2*n+2-i)*phi(i). - Chai Wah Wu, Aug 16 2021
Extensions
More terms from N. J. A. Sloane, Mar 10 2020
Comments