cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332614 a(n) is the smallest index k such that Sum_{m=1..k} 1/z(m) > n where z(m) is the imaginary part of the m-th nontrivial zero of the Riemann zeta function, n=0,1,2,...

Original entry on oeis.org

1, 93, 621, 2437, 7438, 19490, 45996, 100462, 206617, 404855, 762155, 1387088, 2452209, 4227039, 7126088, 11778044, 19124514, 30559702, 48126380, 74788784, 114809974, 174270215, 261774713, 389414312, 574062463, 839117171, 1216829213, 1751399577, 2503082172, 3553595368
Offset: 0

Views

Author

Artur Jasinski, Feb 17 2020

Keywords

Comments

Because series Sum_{m>=1} 1/z(m) is divergent this sequence is infinite.
Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645.
Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966... see A074760.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317... see A245275.
Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823... see A245276.
a(11)-a(39) computed by David Platt, Mar 20 2020.

Examples

			a(0)=1 because 1/z(1) = 0.070747749954285585596 > 0
a(1)=93 because Sum_{m=1..93} 1/z(m) = 1.00082895080028509266 > 1
a(2)=621 because Sum_{m=1..621} 1/z(m) = 2.00017203211984838994 > 2.
		

Crossrefs

Programs

  • Mathematica
    aa = {}; kk = 0; b = 0; Do[b = b + N[1/Im[ZetaZero[n]], 30];
    If[b > kk, AppendTo[aa, n]; kk = kk + 1];, {n, 1, 1000000}]; aa

Extensions

More terms from Artur Jasinski, Feb 21 2020