A332636 Two-parameter family of recursively defined triangles, T(m,t), whose rows right-padded with zeros appear in the limiting sequence of families of certain linear recursive sequences. The data presents the sequence of triangles T(2,t) by ascending antidiagonals.
1, 1, -1, 1, -1, -1, 1, -1, -1, 2, 1, -1, -1, 2, 1, 1, -1, -1, 2, -1, -3, 1, -1, -1, 2, -1, 2, 1, 1, -1, -1, 2, -1, 0, -3, 1, 1, -1, -1, 2, -1, 0, 2, 1, -3, 1, -1, -1, 2, -1, 0, 0, -3, 1, -1, 1, -1, -1, 2, -1, 0, 0, 2, 1, -3, 9, 1, -1, -1, 2, -1, 0, 0, 0, -3, 1, 3, -4, 1, -1, -1, 2, -1, 0, 0, 0, 2, 1, -3, -5, -6, 1, -1, -1, 2, -1, 0, 0, 0, 0, -3, 1, 3, 10, 5
Offset: 1
Examples
The first 4 triangle rows of T(2,1). 1 -1 -1 2 1 -3 1 1 -3 -1 9 -4 -6 5 -1 -1 4 0 -17 14 21 -28 -2 15 -7 1 The first 3 triangle rows of T(2,2). 1 -1 -1 2 -1 2 -3 1 1 -3 3 -5 10 -8 6 -8 5 -1 The first 3 triangle rows of T(2,3). 1 -1 -1 2 -1 0 2 -3 1 1 -3 3 -1 -4 10 -8 2 4 -8 5 -1 The first 3 triangle rows of T(3,3). 1 -1 -2 4 -2 0 2 -3 1 4 -12 12 -4 -8 20 -16 4 4 -8 5 1 The first 67 values (G(1)..G(67)) of the k=15th member of the family of recursive G sequences, with m=2, t=1, laid out as an initial row of 15 numbers followed by 4 rows of 13 members. As can be seen, the initial segments of lengths 2, 5, 8, 11 of rows 2 through 5 respectively are 1, -1 (2nd row), -1, 2, 1, -3, 1 (3rd row), 1, -3, -1, 9, -4, -6, 5, -1 (4th row), -1, 4, 0, -17, 14, 21, -28, -2, 15, -7, 1 (5th row) and these are identical to the first 4 triangle rows in the t=1, m=2 case confirming the empirical observation that both the triangle recursion and the family of G sequences give rise to the same triangles. 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 -1 2 1 -3 1 0 0 0 0 0 0 0 0 1 -3 -1 9 -4 -6 5 -1 0 0 0 0 0 -1 4 0 -17 14 21 -28 -2 15 -7 1 0 0 For m=2, the first 16 members of the first 14 triangles (t=1, t=2, ..., t=14) with each triangle laid out row by row. The ascending diagonals in the data section can be produced from this array. t\n | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 -----+---------------------------------------------- t=1 | 1 -1 -1 2 1 -3 1 1 -3 -1 9 -4 -6 5 -1 -1 t=2 | 1 -1 -1 2 -1 2 -3 1 1 -3 3 -5 10 -8 6 -8 t=3 | 1 -1 -1 2 -1 0 2 -3 1 1 -3 3 -1 -4 10 -8 t=4 | 1 -1 -1 2 -1 0 0 2 -3 1 1 -3 3 -1 0 -4 t=5 | 1 -1 -1 2 -1 0 0 0 2 -3 1 1 -3 3 -1 0 t=6 | 1 -1 -1 2 -1 0 0 0 0 2 -3 1 1 -3 3 -1 t=7 | 1 -1 -1 2 -1 0 0 0 0 0 2 -3 1 1 -3 3 t=8 | 1 -1 -1 2 -1 0 0 0 0 0 0 2 -3 1 1 -3 t=9 | 1 -1 -1 2 -1 0 0 0 0 0 0 0 2 -3 1 1 t=10 | 1 -1 -1 2 -1 0 0 0 0 0 0 0 0 2 -3 1 t=11 | 1 -1 -1 2 -1 0 0 0 0 0 0 0 0 0 2 -3 t=12 | 1 -1 -1 2 -1 0 0 0 0 0 0 0 0 0 0 2 t=13 | 1 -1 -1 2 -1 0 0 0 0 0 0 0 0 0 0 0 t=14 | 1 -1 -1 2 -1 0 0 0 0 0 0 0 0 0 0 0 For m=3, the first 16 members of the first 14 triangles (t=1, t=2, ..., t=14) with each triangle laid out row by row. t\n | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 -----+---------------------------------------------- t=1 | 1 -1 -2 4 0 -3 1 4 -12 4 16 -12 -4 5 t=2 | 1 -1 -2 4 -2 2 -3 1 4 -12 12 -12 20 -16 t=3 | 1 -1 -2 4 -2 0 2 -3 1 4 -12 12 -4 -8 t=4 | 1 -1 -2 4 -2 0 0 2 -3 1 4 -12 12 -4 t=5 | 1 -1 -2 4 -2 0 0 0 2 -3 1 4 -12 12 t=6 | 1 -1 -2 4 -2 0 0 0 0 2 -3 1 4 -12 t=7 | 1 -1 -2 4 -2 0 0 0 0 0 2 -3 1 4 t=8 | 1 -1 -2 4 -2 0 0 0 0 0 0 2 -3 1 t=9 | 1 -1 -2 4 -2 0 0 0 0 0 0 0 2 -3 t=10 | 1 -1 -2 4 -2 0 0 0 0 0 0 0 0 2 t=11 | 1 -1 -2 4 -2 0 0 0 0 0 0 0 0 0 t=12 | 1 -1 -2 4 -2 0 0 0 0 0 0 0 0 0 t=13 | 1 -1 -2 4 -2 0 0 0 0 0 0 0 0 0 t=14 | 1 -1 -2 4 -2 0 0 0 0 0 0 0 0 0 25 values, (K(0)..K(-24)) laid out in rows of 5, for the nonpositive indices of the Generalized Fibonacci numbers of order 5. 0 -2 1 1 1 -1 -4 4 1 1 -3 -7 12 -2 1 -7 -11 31 -16 4
Links
- Russell Jay Hendel, Problem Entry 017:08 (Paul Young) Remarks: #5, West Coast Number Theory (Problem Session), 2017.
- Russell Jay Hendel, Recursive Triangles Appearing Embedded in Recursive Families, arXiv:2101.09806 [math.NT], 2021.
- Paul Thomas Young, 2-adic Valuations of Generalized Fibonacci Numbers of Odd Order, Integers 18 (2018), article A1.
- Russell Jay Hendel, Recursive Triangles Appearing Embedded in Recursive Families, Fibonacci Quart. 58 (2020), no. 5, 135-143.
Crossrefs
A118800 gives the nonzero entries of the sequence for t=1 and m=1.
Programs
-
PARI
TRIANGLE(m,t,r)={\\Prints r rows of T(m,t) local(OFFSET,MAXLENGTH,i,j,T1,T2);OFFSET = t+2; MAXLENGTH=2+(r-1)*(t+2); T=matrix(r,OFFSET+MAXLENGTH,i,j,0); T[1,OFFSET+1]=1; T[1,OFFSET+2]=-1; for(i=2,r,for(j=OFFSET+1,OFFSET+MAXLENGTH,T[i,j]=-(m-1)*T[i-1,j]+(m-1)*T[i-1,j-1]+2*T[i-1,j-1-t]-T[i-1,j-2-t])); T2=matrix(r,MAXLENGTH,i,j,0); for(i=1,r,for(j=1,MAXLENGTH,T2[i,j]=T[i,OFFSET+j]));printp(T2); }
-
PARI
RECURSION(m,t,k,r)={ \\Prints (G(k+1)..G(k+r*(k-t-1))) of k-th recursion as r rows \\G is k-th member of recursive family with parameters m,t local(LENGTH, i,v,s,l);v=vector(k,i,0); LENGTH=k-t-1; G=vector(k+r*LENGTH,i,0);G[1]=1; R=vector(k,i,-1);R[1]=1;R[t+2]=-m; for(i=k+1,k+r*LENGTH, for(j=1,#v,v[j]=G[i-1-#v+j]);s=0;for(l=1,#v, s=s+R[l]*v[l];G[i]=s)); G2=matrix(r,LENGTH,i,j,0); for(i=1,r,for(j=1,LENGTH,G2[i,j] = G[k+(i-1)*LENGTH+j]));printp(G2);}
-
PARI
RECURSION2(k)={ \\Prints (K(0)..K(-(k^2-k-1)) of Generalized Fibonacci numbers \\Prints k-1 rows (excluding initial conditions) of length k local(LENGTH, i,v,s,l);v=vector(k,i,0); LENGTH=k;r=k-1; G=vector(k+r*LENGTH,i,1);G[1]=k-1; R=vector(k,i,-1);R[1]=1; for(i=k+1,k+r*LENGTH, for(j=1,#v,v[j]=G[i-1-#v+j]);s=0;for(l=1,#v, s=s+R[l]*v[l];G[i]=s)); G2=matrix(r,LENGTH,i,j,0); for(i=1,r,for(j=1,LENGTH,G2[i,j] = G[k+(i-1)*LENGTH+j]));printp(G2);}
Formula
Let T(1,1)=1, T(1,2)=-1, and T(1,x)=0, if x < 1 or x > 2. For p >= 1, define T(p+1,q) = -(m-1)*T(p,q) + (m-1)*T(p,q-1) + 2*T(p,q-1-t) - T(p,q-2-t).
Alternatively, for k >= t+3, define the k-th member of a family of recursions by G(n) = G(n-k) - Sum_{i=1..k-1} G(n-k+i) - (m-1)*G(n-k+t+1) and initial conditions G(1)=1, G(i)=0, i=2,3,...,k. Then for any fixed n, for all large k, the first k+(n-1)*(k-t-1) terms of G are 1, 0^(k-1), T(1), 0^z(1), T(2), 0^z(2), ..., T(n), 0^z(n) with the z(i) positive integers, with T(i) rows of a triangle with length 2+(i-1)*(t+2) and such that length(T(i)) + z(i) = k-t-1.
Comments