A332650 Number of polygonal cacti on 2n-1 unlabeled nodes with every polygon having an odd prime number of edges.
1, 1, 2, 4, 10, 30, 105, 400, 1654, 7229, 32944, 154749, 744973, 3655993, 18232812, 92162974, 471301437, 2434542190, 12687850499, 66646225443, 352548333438, 1876770716627, 10048289587337, 54079948967654, 292447643655469, 1588388448970674, 8661869330014601
Offset: 1
Keywords
Examples
a(3) = 2 because there are two cacti on 5 nodes which are a pentagon and 2 triangles joined at a node.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Wikipedia, Cactus graph
- Index entries for sequences related to cacti
Programs
-
PARI
\\ Here UCacti gives number of unrooted cacti with restricted polygons. EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} RCacti(u)={my(v=[1]); while(#v<#u, my(g=x*Ser(v), g2=subst(g,x,x^2) + O(x^2*x^#v), r=sum(k=1, #u-1, my(c=u[k+1]); if(c, c*(g^k + g^(k%2)*g2^(k\2))))/2 + O(x^#u)); v=concat([1], EulerT(Vec(r, 1-serprec(r, x))))); v} UCacti(u)={my(p=x*Ser(RCacti(u))); my(g(d)=subst(p + O(x*x^(#u\d)), x, x^d)); Vec(g(1) + sum(k=1, #u, my(c=u[k]); if(c, sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/(2*k) - (g(1)^k)/2 + if(k%2==0, g(2)^(k/2) - g(1)^2*g(2)^(k/2-1))/4)))} seq(n)={my(v=UCacti(vector(2*n-1, i, i>2 && isprime(i)))); vector(n, i, v[2*i-1])}