A332670 Triangle read by rows where T(n,k) is the number of length-k compositions of n whose negation is unimodal.
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 4, 5, 2, 1, 0, 1, 5, 7, 5, 2, 1, 0, 1, 6, 11, 10, 5, 2, 1, 0, 1, 7, 15, 16, 10, 5, 2, 1, 0, 1, 8, 20, 24, 20, 10, 5, 2, 1, 0, 1, 9, 25, 36, 31, 20, 10, 5, 2, 1, 0, 1, 10, 32, 50, 50, 36, 20, 10, 5, 2, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 0 1 2 1 0 1 3 2 1 0 1 4 5 2 1 0 1 5 7 5 2 1 0 1 6 11 10 5 2 1 0 1 7 15 16 10 5 2 1 0 1 8 20 24 20 10 5 2 1 0 1 9 25 36 31 20 10 5 2 1 0 1 10 32 50 50 36 20 10 5 2 1 0 1 11 38 67 73 59 36 20 10 5 2 1 Column n = 7 counts the following compositions: (7) (16) (115) (1114) (11113) (111112) (1111111) (25) (124) (1123) (11122) (211111) (34) (133) (1222) (21112) (43) (214) (2113) (22111) (52) (223) (2122) (31111) (61) (313) (2212) (322) (2221) (331) (3112) (412) (3211) (421) (4111) (511)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- Eric Weisstein's World of Mathematics, Unimodal Sequence.
Crossrefs
The case of partitions is A072233.
Dominated by A072704 (the non-negated version).
The strict case is A072705.
The case of constant compositions is A113704.
Row sums are A332578.
Unimodal compositions are A001523.
Unimodal normal sequences appear to be A007052.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers whose negated unsorted prime signature is not unimodal are A332282.
Partitions whose negated run-lengths are unimodal are A332638.
Compositions whose negation is not unimodal are A332669.
Partitions whose negated 0-appended first differences are unimodal: A332728.
Programs
-
Mathematica
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],unimodQ[-#]&]],{n,0,10},{k,0,n}]
-
PARI
T(n)={[Vecrev(p) | p<-Vec(1 + sum(j=1, n, y*x^j/((1-y*x^j) * prod(k=j+1, n-j, 1 - y*x^k + O(x*x^(n-j)))^2)))]} { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 11 2024
Formula
G.f.: A(x,y) = 1 + Sum_{j>0} y*x^j/((1 - y*x^j)*Product_{k>j} (1 - y*x^k)^2). - Andrew Howroyd, Jan 11 2024
Comments