cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332673 Triangle read by rows where T(n,k) is the number of length-k ordered set partitions of {1..n} whose non-adjacent blocks are pairwise increasing.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 6, 3, 0, 1, 14, 14, 5, 0, 1, 30, 45, 32, 8, 0, 1, 62, 124, 131, 65, 13, 0, 1, 126, 315, 438, 323, 128, 21, 0, 1, 254, 762, 1305, 1270, 747, 243, 34, 0, 1, 510, 1785, 3612, 4346, 3370, 1629, 452, 55
Offset: 0

Views

Author

Gus Wiseman, Mar 02 2020

Keywords

Comments

In other words, parts of subsequent, non-successive blocks are increasing.

Examples

			Triangle begins:
    1
    0    1
    0    1    2
    0    1    6    3
    0    1   14   14    5
    0    1   30   45   32    8
    0    1   62  124  131   65   13
    0    1  126  315  438  323  128   21
    0    1  254  762 1305 1270  747  243   34
    ...
Row n = 4 counts the following ordered set partitions:
  {1234}  {1}{234}  {1}{2}{34}  {1}{2}{3}{4}
          {12}{34}  {1}{23}{4}  {1}{2}{4}{3}
          {123}{4}  {12}{3}{4}  {1}{3}{2}{4}
          {124}{3}  {1}{24}{3}  {2}{1}{3}{4}
          {13}{24}  {12}{4}{3}  {2}{1}{4}{3}
          {134}{2}  {1}{3}{24}
          {14}{23}  {13}{2}{4}
          {2}{134}  {1}{34}{2}
          {23}{14}  {1}{4}{23}
          {234}{1}  {2}{1}{34}
          {24}{13}  {2}{13}{4}
          {3}{124}  {2}{14}{3}
          {34}{12}  {23}{1}{4}
          {4}{123}  {3}{12}{4}
		

Crossrefs

An apparently related triangle is A056242.
Column k = n - 1 is A332724.
Row sums are A332872, which appears to be A007052 shifted right once.
Ordered set-partitions are A000670.
Unimodal compositions are A001523.
Non-unimodal normal sequences are A328509.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[Join@@Permutations/@sps[Range[n]],Length[#]==k&&!MatchQ[#,{_,{_,a_,_},,{_,b_,_},_}/;a>b]&]],{n,0,5},{k,0,n}]