A332676 Prime numbers p_k such that p_k == 3 (mod 10) and p_(k+1) == 3 (mod 10).
283, 1153, 1723, 2053, 2143, 3413, 3583, 3823, 3853, 4243, 4273, 4363, 4483, 4663, 5323, 5903, 6133, 6163, 6343, 6553, 6793, 6803, 7253, 7963, 8243, 8353, 8543, 8563, 8783, 8893, 9283, 9403, 10223, 10303, 10433, 10993, 11093, 11383, 12253, 12703, 13063, 13513, 13933, 14293, 14983
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- R. J. Lemke Oliver and K. Soundararajan, Unexpected biases in the distribution of consecutive primes, arXiv:1603.03720 [math.NT], 2016.
- R. J. Lemke Oliver and K. Soundararajan, Unexpected biases in the distribution of consecutive primes, Proceedings of the National Academy of Sciences of the United States of America, Vol. 113, No. 31 (2016), E4446-E4454.
Crossrefs
Programs
-
Maple
filter:= t -> isprime(t) and nextprime(t) mod 10 = 3: select(filter, [seq(i,i=3..20000,10)]); # Robert Israel, May 08 2020
-
Mathematica
First @ Transpose @ Select[Partition[Select[Range[20000], PrimeQ], 2, 1], Mod[First[#], 10] == 3 && Mod[Last[#], 10] == 3 &] (* Amiram Eldar, Feb 19 2020 *)