cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332698 a(n) = (8*n^3 + 15*n^2 + 13*n)/6.

Original entry on oeis.org

0, 6, 25, 65, 134, 240, 391, 595, 860, 1194, 1605, 2101, 2690, 3380, 4179, 5095, 6136, 7310, 8625, 10089, 11710, 13496, 15455, 17595, 19924, 22450, 25181, 28125, 31290, 34684, 38315, 42191, 46320, 50710, 55369, 60305, 65526, 71040, 76855, 82979, 89420, 96186
Offset: 0

Views

Author

Peter Luschny, Feb 20 2020

Keywords

Comments

The end values of the partial rows on the main diagonal of A332662 in the representation in the example section.

Crossrefs

Programs

  • Maple
    a := n -> (8*n^3 + 15*n^2 + 13*n)/6: seq(a(n), n=0..41);
    gf := (x*(x^2 + x + 6))/(x - 1)^4: ser := series(gf, x, 44):
    seq(coeff(ser, x, n), n=0..41);
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1}, {0, 6, 25, 65}, 42]
    Table[(8n^3+15n^2+13n)/6,{n,0,50}] (* Harvey P. Dale, Sep 13 2024 *)

Formula

a(n) = [x^n] (x*(x^2 + x + 6))/(x - 1)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = binomial(n+2, 3) + binomial(n+1, 3) + 2*(n+1)*binomial(n+1, 2) + binomial(n, 1) = A331987(n) + n.