A332709 Triangle T(n,k) read by rows where T(n,k) is the number of ménage permutations that map 1 to k, with 3 <= k <= n.
1, 1, 1, 4, 5, 4, 20, 20, 20, 20, 115, 116, 117, 116, 115, 787, 791, 791, 791, 791, 787, 6184, 6203, 6204, 6205, 6204, 6203, 6184, 54888, 55000, 55004, 55004, 55004, 55004, 55000, 54888, 542805, 543576, 543595, 543596, 543597, 543596, 543595, 543576, 542805
Offset: 3
Examples
Triangle begins: n\k| 3 4 5 6 7 8 9 10 ---+-------------------------------------------------------- 3 | 1 4 | 1, 1 5 | 4, 5, 4 6 | 20, 20, 20, 20 7 | 115, 116, 117, 116, 115 8 | 787, 791, 791, 791, 791, 787 9 | 6184, 6203, 6204, 6205, 6204, 6203, 6184 10 | 54888, 55000, 55004, 55004, 55004, 55004, 55000, 54888 For n=5 and k=3, the T(5,3)=4 permutations on five letters that start with a 3 are 31524, 34512, 35124, and 35212.
Links
- Peter Kagey, Table of n, a(n) for n = 3..1277 (first 50 rows)
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Sum[Sum[(-1)^i*(n - i - 1)!*Binomial[2*k - j - 4, j]* Binomial[2*(n - k + 1) - i + j, i - j], {j, Max[k + i - n - 1, 0], Min[i, k - 2]}], {i, 0, n - 1}] (* Peter Kagey, Jan 22 2021 *)
Formula
T(n,k) = Sum_{i=0..n-1} Sum_{j=max(k+i-n-1,0)..min(i,k-2)} (-1)^i*(n-i-1)! * binomial(2k-j-4,j) * binomial(2(n-k+1)-i+j,i-j).
Comments