cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332720 Index position of {3}^n within the list of partitions of 3n in canonical ordering.

Original entry on oeis.org

1, 1, 5, 19, 59, 150, 349, 745, 1515, 2936, 5514, 10036, 17851, 31039, 53006, 88943, 147057, 239701, 385885, 613855, 966137, 1505137, 2323124, 3553914, 5392315, 8117758, 12131618, 18003740, 26543030, 38886999, 56633453, 82009410, 118113488, 169229009, 241264461
Offset: 0

Views

Author

Alois P. Heinz, Feb 20 2020

Keywords

Comments

The canonical ordering of partitions is described in A080577.

Examples

			a(2) = 5, because 33 has position 5 within the list of partitions of 6 in canonical ordering: 6, 51, 42, 411, 33, 321, 3111, 222, ... .
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember;
         `if`(n=0, 1, b(n-1)+g(3*n, 2))
        end:
    g:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
         `if`(i<1, 0, g(n-i, min(n-i, i))+g(n, i-1)))
        end:
    a:= n-> g(3*n$2)-b(n)+1:
    seq(a(n), n=0..35);
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, b[n - 1] + g[3n, 2]];
    g[n_, i_] := g[n, i] = If[n == 0 || i == 1, 1, If[i < 1, 0, g[n - i, Min[n - i, i]] + g[n, i - 1]]];
    a[n_] := g[3n, 3n] - b[n] + 1;
    a /@ Range[0, 35] (* Jean-François Alcover, Jan 06 2021, after Alois P. Heinz *)

Formula

a(n) ~ exp(Pi*sqrt(2*n)) / (4*3^(3/2)*n). - Vaclav Kotesovec, Feb 28 2020