cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332726 Number of compositions of n whose run-lengths are unimodal.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 31, 61, 120, 228, 438, 836, 1580, 2976, 5596, 10440, 19444, 36099, 66784, 123215, 226846, 416502, 763255, 1395952, 2548444, 4644578, 8452200, 15358445, 27871024, 50514295, 91446810, 165365589, 298730375, 539127705, 972099072, 1751284617, 3152475368
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The only composition of 6 whose run-lengths are not unimodal is (1,1,2,1,1).
		

Crossrefs

Looking at the composition itself (not run-lengths) gives A001523.
The case of partitions is A332280, with complement counted by A332281.
The complement is counted by A332727.
Unimodal compositions are A001523.
Unimodal normal sequences appear to be A007052.
Non-unimodal compositions are A115981.
Compositions with normal run-lengths are A329766.
Numbers whose prime signature is not unimodal are A332282.
Partitions whose 0-appended first differences are unimodal are A332283, with complement A332284, with Heinz numbers A332287.
Compositions whose negated run-lengths are unimodal are A332578.
Compositions whose negated run-lengths are not unimodal are A332669.
Compositions whose run-lengths are weakly increasing are A332836.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],unimodQ[Length/@Split[#]]&]],{n,0,10}]
  • PARI
    step(M, m)={my(n=matsize(M)[1]); for(p=m+1, n, my(v=vector((p-1)\m, i, M[p-i*m,i]), s=vecsum(v)); M[p,]+=vector(#M,i,s-if(i<=#v, v[i]))); M}
    desc(M, m)={my(n=matsize(M)[1]); while(m>1, m--; M=step(M,m)); vector(n, i, vecsum(M[i,]))/(#M-1)}
    seq(n)={my(M=matrix(n+1, n+1, i, j, i==1), S=M[,1]~); for(m=1, n, my(D=M); M=step(M, m); D=(M-D)[m+1..n+1,1..n-m+2]; S+=concat(vector(m), desc(D,m))); S} \\ Andrew Howroyd, Dec 31 2020

Formula

a(n) + A332727(n) = 2^(n - 1).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2020