A332743 Number of non-unimodal compositions of n covering an initial interval of positive integers.
0, 0, 0, 0, 0, 1, 5, 14, 35, 83, 193, 417, 890, 1847, 3809, 7805, 15833, 32028, 64513, 129671, 260155, 521775, 1044982, 2092692, 4188168, 8381434, 16767650, 33544423, 67098683, 134213022, 268443023, 536912014, 1073846768, 2147720476, 4295440133, 8590833907
Offset: 0
Keywords
Examples
The a(5) = 1 through a(7) = 14 compositions: (212) (213) (1213) (312) (1312) (1212) (2113) (2112) (2122) (2121) (2131) (2212) (3112) (3121) (11212) (12112) (12121) (21112) (21121) (21211)
Links
- MathWorld, Unimodal Sequence
Crossrefs
Not requiring non-unimodality gives A107429.
Not requiring the covering condition gives A115981.
The complement is counted by A227038.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal normal sequences are A328509.
Numbers whose unsorted prime signature is not unimodal are A332282.
Programs
-
Mathematica
normQ[m_]:=m=={}||Union[m]==Range[Max[m]]; unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],normQ[#]&&!unimodQ[#]&]],{n,0,10}]
Comments