cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A115981 The number of compositions of n which cannot be viewed as stacks.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 5, 17, 49, 126, 303, 694, 1536, 3312, 7009, 14619, 30164, 61732, 125568, 254246, 513048, 1032696, 2074875, 4163256, 8345605, 16717996, 33473334, 66998380, 134067959, 268233386, 536599508, 1073378850, 2147000209
Offset: 0

Views

Author

Alford Arnold, Feb 12 2006

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. A composition of n is a finite sequence of positive integers summing to n. - Gus Wiseman, Mar 05 2020

Examples

			a(5) = 1 counting {212}.
a(6) = 5 counting {1212, 2112,2121,213,312}.
a(7) = 17 counting {11212, 12112,12121, 21211, 21121, 21112, 2122, 2212, 2113, 3112, 2131, 3121, 1213, 1312, 412, 214, 313}.
a(8) = 49 = 128 - 79.
a(9) = 126 = 256 - 130.
		

Crossrefs

The complement is counted by A001523.
The strict case is A072707.
The case covering an initial interval is A332743.
The version whose negation is not unimodal either is A332870.
Non-unimodal permutations are A059204.
Non-unimodal normal sequences are A328509.
Partitions with non-unimodal run-lengths are A332281.
Numbers whose prime signature is not unimodal are A332282.
Partitions whose 0-appended first differences are not unimodal are A332284.
Non-unimodal permutations of the prime indices of n are A332671.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!unimodQ[#]&]],{n,0,10}] (* Gus Wiseman, Mar 05 2020 *)

Formula

a(n) = A011782(n) - A001523(n).

Extensions

More terms from Brian Kuehn (brk158(AT)psu.edu), Apr 20 2006
a(25) corrected by Georg Fischer, Jun 29 2021

A007052 Number of order-consecutive partitions of n.

Original entry on oeis.org

1, 3, 10, 34, 116, 396, 1352, 4616, 15760, 53808, 183712, 627232, 2141504, 7311552, 24963200, 85229696, 290992384, 993510144, 3392055808, 11581202944, 39540700160, 135000394752, 460920178688, 1573679925248, 5372879343616, 18344157523968, 62630871408640, 213835170586624
Offset: 0

Views

Author

Colin Mallows, N. J. A. Sloane, and Simon Plouffe

Keywords

Comments

After initial terms, first differs from A291292 at a(6) = 1352, A291292(8) = 1353.
Joe Keane (jgk(AT)jgk.org) observes that this sequence (beginning at 3) is "size of raises in pot-limit poker, one blind, maximum raising".
It appears that this sequence is the BinomialMean transform of A001653 (see A075271). - John W. Layman, Oct 03 2002
Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = 3, s(2n+1) = 4. - Herbert Kociemba, Jun 12 2004
Equals the INVERT transform of (1, 2, 5, 13, 34, 89, ...). - Gary W. Adamson, May 01 2009
a(n) is the number of compositions of n when there are 3 types of ones. - Milan Janjic, Aug 13 2010
a(n)/a(n-1) tends to (4 + sqrt(8))/2 = 3.414213.... Gary W. Adamson, Jul 30 2013
a(n) is the first subdiagonal of array A228405. - Richard R. Forberg, Sep 02 2013
Number of words of length n over {0,1,2,3,4} in which binary subwords appear in the form 10...0. - Milan Janjic, Jan 25 2017
From Gus Wiseman, Mar 05 2020: (Start)
Also the number of unimodal sequences of length n + 1 covering an initial interval of positive integers, where a sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. For example, the a(0) = 1 through a(2) = 10 sequences are:
(1) (1,1) (1,1,1)
(1,2) (1,1,2)
(2,1) (1,2,1)
(1,2,2)
(1,2,3)
(1,3,2)
(2,1,1)
(2,2,1)
(2,3,1)
(3,2,1)
Missing are: (2,1,2), (2,1,3), (3,1,2).
Conjecture: Also the number of ordered set partitions of {1..n + 1} where no element of any block is greater than any element of a non-adjacent consecutive block. For example, the a(0) = 1 through a(2) = 10 ordered set partitions are:
{{1}} {{1,2}} {{1,2,3}}
{{1},{2}} {{1},{2,3}}
{{2},{1}} {{1,2},{3}}
{{1,3},{2}}
{{2},{1,3}}
{{2,3},{1}}
{{3},{1,2}}
{{1},{2},{3}}
{{1},{3},{2}}
{{2},{1},{3}}
a(n-1) is the number of hexagonal directed-column convex polyominoes having area n (see Baril et al. at page 4). - Stefano Spezia, Oct 14 2023

Examples

			G.f. = 1 + 3*x + 10*x^2 + 34*x^3 + 116*x^4 + 396*x^5 + 1352*x^6 + 4616*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Floor((2+Sqrt(2))^n*(1/2+Sqrt(2)/4)+(2-Sqrt(2))^n*(1/2-Sqrt(2)/4)): n in [0..30] ] ; // Vincenzo Librandi, Aug 20 2011
  • Mathematica
    a[n_]:=(MatrixPower[{{3,1},{1,1}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    a[ n_] := ((2 + Sqrt[2])^(n + 1) + (2 - Sqrt[2])^(n + 1)) / 4 // Simplify; (* Michael Somos, Jan 25 2017 *)
    LinearRecurrence[{4, -2}, {1, 3}, 24] (* Jean-François Alcover, Jan 07 2019 *)
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Union@@Permutations/@allnorm[n],unimodQ]],{n,6}] (* Gus Wiseman, Mar 06 2020 *)
  • PARI
    {a(n) = real((2 + quadgen(8))^(n+1)) / 2}; /* Michael Somos, Mar 06 2003 */
    

Formula

a(n+1) = 4*a(n) - 2*a(n-1).
G.f.: (1-x)/(1-4*x+2*x^2).
Binomial transform of Pell numbers 1, 2, 5, 12, ... (A000129).
a(n) = A006012(n+1)/2 = A056236(n+1)/4. - Michael Somos, Mar 06 2003
a(n) = (A035344(n)+1)/2; a(n) = (2+sqrt(2))^n(1/2+sqrt(2)/4)+(2-sqrt(2))^n(1/2-sqrt(2)/4). - Paul Barry, Jul 16 2003
Second binomial transform of (1, 1, 2, 2, 4, 4, ...). a(n) = Sum_{k=1..floor(n/2)}, C(n, 2k)*2^(n-k-1). - Paul Barry, Nov 22 2003
a(n) = ( (2-sqrt(2))^(n+1) + (2+sqrt(2))^(n+1) )/4. - Herbert Kociemba, Jun 12 2004
a(n) = both left and right terms in M^n * [1 1 1], where M = the 3 X 3 matrix [1 1 1 / 1 2 1 / 1 1 1]. M^n * [1 1 1] = [a(n) A007070(n) a(n)]. E.g., a(3) = 34. M^3 * [1 1 1] = [34 48 34] (center term is A007070(3)). - Gary W. Adamson, Dec 18 2004
The i-th term of the sequence is the entry (2, 2) in the i-th power of the 2 X 2 matrix M = ((1, 1), (1, 3)). - Simone Severini, Oct 15 2005
E.g.f.: exp(2*x)*(cosh(sqrt(2)*x)+sinh(sqrt(2)*x)/sqrt(2)). - Paul Barry, Nov 20 2003
a(n) = A007068(2*n), n>0. - R. J. Mathar, Aug 17 2009
If p[i]=Fibonacci(2i-1) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010
a(n-1) = Sum_{k=-floor(n/4)..floor(n/4)} (-1)^k*binomial(2*n,n+4*k)/2. - Mircea Merca, Jan 28 2012
G.f.: G(0)*(1-x)/(2*x) + 1 - 1/x, where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - (1-x)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n) = 3*a(n-1) + a(n-2) + a(n-3) + a(n-4) + ... + a(0). - Gary W. Adamson, Aug 12 2013
a(n) = a(-2-n) * 2^(n+1) for all n in Z. - Michael Somos, Jan 25 2017

A000212 a(n) = floor(n^2/3).

Original entry on oeis.org

0, 0, 1, 3, 5, 8, 12, 16, 21, 27, 33, 40, 48, 56, 65, 75, 85, 96, 108, 120, 133, 147, 161, 176, 192, 208, 225, 243, 261, 280, 300, 320, 341, 363, 385, 408, 432, 456, 481, 507, 533, 560, 588, 616, 645, 675, 705, 736, 768, 800, 833, 867, 901, 936
Offset: 0

Views

Author

Keywords

Comments

Let M_n be the n X n matrix of the following form: [3 2 1 0 0 0 0 0 0 0 / 2 3 2 1 0 0 0 0 0 0 / 1 2 3 2 1 0 0 0 0 0 / 0 1 2 3 2 1 0 0 0 0 / 0 0 1 2 3 2 1 0 0 0 / 0 0 0 1 2 3 2 1 0 0 / 0 0 0 0 1 2 3 2 1 0 / 0 0 0 0 0 1 2 3 2 1 / 0 0 0 0 0 0 1 2 3 2 / 0 0 0 0 0 0 0 1 2 3]. Then for n > 2 a(n) = det M_(n-2). - Benoit Cloitre, Jun 20 2002
Largest possible size for the directed Cayley graph on two generators having diameter n - 2. - Ralf Stephan, Apr 27 2003
It seems that for n >= 2, a(n) is the maximum number of non-overlapping 1 X 3 rectangles that can be packed into an n X n square. Rectangles can only be placed parallel to the sides of the square. Verified with Lobato's tool, see links. - Dmitry Kamenetsky, Aug 03 2009
Maximum number of edges in a K4-free graph with n vertices. - Yi Yang, May 23 2012
3a(n) + 1 = y^2 if n is not 0 mod 3 and 3a(n) = y^2 otherwise. - Jon Perry, Sep 10 2012
Apart from the initial term this is the elliptic troublemaker sequence R_n(1, 3) (also sequence R_n(2, 3)) in the notation of Stange (see Table 1, p. 16). For other elliptic troublemaker sequences R_n(a, b) see the cross references below. - Peter Bala, Aug 08 2013
The number of partitions of 2n into exactly 3 parts. - Colin Barker, Mar 22 2015
a(n-1) is the maximum number of non-overlapping triples (i,k), (i+1, k+1), (i+2, k+2) in an n X n matrix. Details: The triples are distributed along the main diagonal and 2*(n-1) other diagonals. Their maximum number is floor(n/3) + 2*Sum_{k = 1..n-1} floor(k/3) = floor((n-1)^2/3). - Gerhard Kirchner, Feb 04 2017
Conjecture: a(n) is the number of intersection points of n cevians that cut a triangle into the maximum number of pieces (see A007980). - Anton Zakharov, May 07 2017
From Gus Wiseman, Oct 05 2020: (Start)
Also the number of unimodal triples (meaning the middle part is not strictly less than both of the other two) of positive integers summing to n + 1. The a(2) = 1 through a(6) = 12 triples are:
(1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5)
(1,2,1) (1,2,2) (1,2,3) (1,2,4)
(2,1,1) (1,3,1) (1,3,2) (1,3,3)
(2,2,1) (1,4,1) (1,4,2)
(3,1,1) (2,2,2) (1,5,1)
(2,3,1) (2,2,3)
(3,2,1) (2,3,2)
(4,1,1) (2,4,1)
(3,2,2)
(3,3,1)
(4,2,1)
(5,1,1)
(End)

Examples

			G.f. = x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 12*x^6 + 16*x^7 + 21*x^8 + 27*x^9 + 33*x^10 + ...
From _Gus Wiseman_, Oct 07 2020: (Start)
The a(2) = 1 through a(6) = 12 partitions of 2*n into exactly 3 parts (Barker) are the following. The Heinz numbers of these partitions are given by the intersection of A014612 (triples) and A300061 (even sum).
  (2,1,1)  (2,2,2)  (3,3,2)  (4,3,3)  (4,4,4)
           (3,2,1)  (4,2,2)  (4,4,2)  (5,4,3)
           (4,1,1)  (4,3,1)  (5,3,2)  (5,5,2)
                    (5,2,1)  (5,4,1)  (6,3,3)
                    (6,1,1)  (6,2,2)  (6,4,2)
                             (6,3,1)  (6,5,1)
                             (7,2,1)  (7,3,2)
                             (8,1,1)  (7,4,1)
                                      (8,2,2)
                                      (8,3,1)
                                      (9,2,1)
                                      (10,1,1)
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000290, A007590 (= R_n(2,4)), A002620 (= R_n(1,2)), A118015, A056827, A118013.
Cf. A033436 (= R_n(1,4) = R_n(3,4)), A033437 (= R_n(1,5) = R_n(4,5)), A033438 (= R_n(1,6) = R_n(5,6)), A033439 (= R_n(1,7) = R_n(6,7)), A033440, A033441, A033442, A033443, A033444.
Cf. A001353 and A004523 (first differences). A184535 (= R_n(2,5) = R_n(3,5)).
Cf. A238738. - Bruno Berselli, Apr 17 2015
Cf. A005408.
A000217(n-2) counts 3-part compositions.
A014612 ranks 3-part partitions, with strict case A007304.
A069905 counts the 3-part partitions.
A211540 counts strict 3-part partitions.
A337453 ranks strict 3-part compositions.
A001399(n-6)*4 is the strict version.
A001523 counts unimodal compositions, with strict case A072706.
A001840(n-4) is the non-unimodal version.
A001399(n-6)*2 is the strict non-unimodal version.
A007052 counts unimodal patterns.
A115981 counts non-unimodal compositions, ranked by A335373.
A011782 counts unimodal permutations.
A335373 is the complement of a ranking sequence for unimodal compositions.
A337459 ranks these compositions, with complement A337460.

Programs

  • Magma
    [Floor(n^2 / 3): n in [0..50]]; // Vincenzo Librandi, May 08 2011
    
  • Maple
    A000212:=(-1+z-2*z**2+z**3-2*z**4+z**5)/(z**2+z+1)/(z-1)**3; # Conjectured by Simon Plouffe in his 1992 dissertation. Gives sequence with an additional leading 1.
    A000212 := proc(n) option remember; `if`(n<4, [0,0,1,3][n+1], a(n-1)+a(n-3) -a(n-4)+2) end; # Peter Luschny, Nov 20 2011
  • Mathematica
    Table[Quotient[n^2, 3], {n, 0, 59}] (* Michael Somos, Jan 22 2014 *)
  • PARI
    {a(n) = n^2 \ 3}; /* Michael Somos, Sep 25 2006 */
    
  • Python
    def A000212(n): return n**2//3 # Chai Wah Wu, Jun 07 2022

Formula

G.f.: x^2*(1+x)/((1-x)^2*(1-x^3)). - Franklin T. Adams-Watters, Apr 01 2002
Euler transform of length 3 sequence [ 3, -1, 1]. - Michael Somos, Sep 25 2006
G.f.: x^2 * (1 - x^2) / ((1 - x)^3 * (1 - x^3)). a(-n) = a(n). - Michael Somos, Sep 25 2006
a(n) = Sum_{k = 0..n} A011655(k)*(n-k). - Reinhard Zumkeller, Nov 30 2009
a(n) = a(n-1) + a(n-3) - a(n-4) + 2 for n >= 4. - Alexander Burstein, Nov 20 2011
a(n) = a(n-3) + A005408(n-2) for n >= 3. - Alexander Burstein, Feb 15 2013
a(n) = (n-1)^2 - a(n-1) - a(n-2) for n >= 2. - Richard R. Forberg, Jun 05 2013
Sum_{n >= 2} 1/a(n) = (27 + 6*sqrt(3)*Pi + 2*Pi^2)/36. - Enrique Pérez Herrero, Jun 29 2013
0 = a(n)*(a(n+2) + a(n+3)) + a(n+1)*(-2*a(n+2) - a(n+3) + a(n+4)) + a(n+2)*(a(n+2) - 2*a(n+3) + a(n+4)) for all n in Z. - Michael Somos, Jan 22 2014
a(n) = Sum_{k = 1..n} k^2*A049347(n+2-k). - Mircea Merca, Feb 04 2014
a(n) = Sum_{i = 1..n+1} (ceiling(i/3) + floor(i/3) - 1). - Wesley Ivan Hurt, Jun 06 2014
a(n) = Sum_{j = 1..n} Sum_{i=1..n} ceiling((i+j-n-1)/3). - Wesley Ivan Hurt, Mar 12 2015
a(n) = Sum_{i = 1..n} floor(2*i/3). - Wesley Ivan Hurt, May 22 2017
a(-n) = a(n). - Paul Curtz, Jan 19 2020
a(n) = A001399(2*n - 3). - Gus Wiseman, Oct 07 2020
a(n) = (1/6)*(2*n^2 - 3 + gcd(n,3)). - Ridouane Oudra, Apr 15 2021
E.g.f.: (exp(x)*(-2 + 3*x*(1 + x)) + 2*exp(-x/2)*cos(sqrt(3)*x/2))/9. - Stefano Spezia, Oct 24 2022
Sum_{n>=2} (-1)^n/a(n) = Pi/sqrt(3) - Pi^2/36 - 3/4. - Amiram Eldar, Dec 02 2022

Extensions

Edited by Charles R Greathouse IV, Apr 19 2010

A328509 Number of non-unimodal sequences of length n covering an initial interval of positive integers.

Original entry on oeis.org

0, 0, 0, 3, 41, 425, 4287, 45941, 541219, 7071501, 102193755, 1622448861, 28090940363, 526856206877, 10641335658891, 230283166014653, 5315654596751659, 130370766738143517, 3385534662263335179, 92801587315936355325, 2677687796232803000171, 81124824998464533181661
Offset: 0

Views

Author

Gus Wiseman, Feb 19 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(3) = 3 sequences are (2,1,2), (2,1,3), (3,1,2).
The a(4) = 41 sequences:
  (1212)  (2113)  (2134)  (2413)  (3142)  (3412)
  (1213)  (2121)  (2143)  (3112)  (3212)  (4123)
  (1312)  (2122)  (2212)  (3121)  (3213)  (4132)
  (1323)  (2123)  (2213)  (3122)  (3214)  (4213)
  (1324)  (2131)  (2312)  (3123)  (3231)  (4231)
  (1423)  (2132)  (2313)  (3124)  (3241)  (4312)
  (2112)  (2133)  (2314)  (3132)  (3312)
		

Crossrefs

Not requiring non-unimodality gives A000670.
The complement is counted by A007052.
The case where the negation is not unimodal either is A332873.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Unimodal compositions covering an initial interval are A227038.
Numbers whose unsorted prime signature is not unimodal are A332282.
Covering partitions with unimodal run-lengths are A332577.
Non-unimodal compositions covering an initial interval are A332743.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Union@@Permutations/@allnorm[n],!unimodQ[#]&]],{n,0,5}]
  • PARI
    seq(n)=Vec( serlaplace(1/(2-exp(x + O(x*x^n)))) - (1 - 3*x + x^2)/(1 - 4*x + 2*x^2), -(n+1)) \\ Andrew Howroyd, Jan 28 2024

Formula

a(n) = A000670(n) - A007052(n-1) for n > 0. - Andrew Howroyd, Jan 28 2024

Extensions

a(9) from Robert Price, Jun 19 2021
a(10) onwards from Andrew Howroyd, Jan 28 2024

A227038 Number of (weakly) unimodal compositions of n where all parts 1, 2, ..., m appear where m is the largest part.

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 13, 19, 30, 44, 71, 98, 147, 205, 294, 412, 575, 783, 1077, 1456, 1957, 2634, 3492, 4627, 6082, 7980, 10374, 13498, 17430, 22451, 28767, 36806, 46803, 59467, 75172, 94839, 119285, 149599, 187031, 233355, 290340, 360327, 446222, 551251, 679524, 835964, 1026210
Offset: 0

Views

Author

Joerg Arndt, Jun 28 2013

Keywords

Examples

			There are a(8) = 30 such compositions of 8:
01:  [ 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 1 2 ]
03:  [ 1 1 1 1 1 2 1 ]
04:  [ 1 1 1 1 2 1 1 ]
05:  [ 1 1 1 1 2 2 ]
06:  [ 1 1 1 2 1 1 1 ]
07:  [ 1 1 1 2 2 1 ]
08:  [ 1 1 1 2 3 ]
09:  [ 1 1 1 3 2 ]
10:  [ 1 1 2 1 1 1 1 ]
11:  [ 1 1 2 2 1 1 ]
12:  [ 1 1 2 2 2 ]
13:  [ 1 1 2 3 1 ]
14:  [ 1 1 3 2 1 ]
15:  [ 1 2 1 1 1 1 1 ]
16:  [ 1 2 2 1 1 1 ]
17:  [ 1 2 2 2 1 ]
18:  [ 1 2 2 3 ]
19:  [ 1 2 3 1 1 ]
20:  [ 1 2 3 2 ]
21:  [ 1 3 2 1 1 ]
22:  [ 1 3 2 2 ]
23:  [ 2 1 1 1 1 1 1 ]
24:  [ 2 2 1 1 1 1 ]
25:  [ 2 2 2 1 1 ]
26:  [ 2 2 3 1 ]
27:  [ 2 3 1 1 1 ]
28:  [ 2 3 2 1 ]
29:  [ 3 2 1 1 1 ]
30:  [ 3 2 2 1 ]
From _Gus Wiseman_, Mar 05 2020: (Start)
The a(1) = 1 through a(6) = 13 compositions:
  (1)  (11)  (12)   (112)   (122)    (123)
             (21)   (121)   (221)    (132)
             (111)  (211)   (1112)   (231)
                    (1111)  (1121)   (321)
                            (1211)   (1122)
                            (2111)   (1221)
                            (11111)  (2211)
                                     (11112)
                                     (11121)
                                     (11211)
                                     (12111)
                                     (21111)
                                     (111111)
(End)
		

Crossrefs

Cf. A001523 (unimodal compositions), A001522 (smooth unimodal compositions with first and last part 1), A001524 (unimodal compositions such that each up-step is by at most 1 and first part is 1).
Organizing by length rather than sum gives A007052.
The complement is counted by A332743.
The case of run-lengths of partitions is A332577, with complement A332579.
Compositions covering an initial interval are A107429.
Non-unimodal compositions are A115981.

Programs

  • Maple
    b:= proc(n,i) option remember;
          `if`(i>n, 0, `if`(irem(n, i)=0, 1, 0)+
          add(b(n-i*j, i+1)*(j+1), j=1..n/i))
        end:
    a:= n-> `if`(n=0, 1, b(n, 1)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 26 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[i>n, 0, If[Mod[n, i] == 0, 1, 0] + Sum[b[n-i*j, i+1]*(j+1), {j, 1, n/i}]]; a[n_] := If[n==0, 1, b[n, 1]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Apr 09 2015, after Alois P. Heinz *)
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],normQ[#]&&unimodQ[#]&]],{n,0,10}] (* Gus Wiseman, Mar 05 2020 *)

Formula

a(n) ~ c * exp(Pi*sqrt(r*n)) / n, where r = 0.9409240878664458093345791978063..., c = 0.05518035191234679423222212249... - Vaclav Kotesovec, Mar 04 2020
a(n) + A332743(n) = 2^(n - 1). - Gus Wiseman, Mar 05 2020

A332286 Number of strict integer partitions of n whose first differences (assuming the last part is zero) are not unimodal.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 3, 5, 5, 7, 9, 12, 15, 22, 23, 31, 40, 47, 58, 72, 81, 100, 122, 144, 171, 206, 236, 280, 333, 381, 445, 522, 593, 694, 802, 914, 1054, 1214, 1376, 1577, 1803, 2040, 2324, 2646, 2973, 3373, 3817, 4287, 4838, 5453, 6096, 6857
Offset: 0

Views

Author

Gus Wiseman, Feb 21 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
Also the number integer partitions of n that cover an initial interval of positive integers and whose negated run-lengths are not unimodal.

Examples

			The a(8) = 1 through a(18) = 7 partitions:
  (431)  .  (541)  (641)  (651)   (652)   (752)   (762)   (862)
                          (5421)  (751)   (761)   (861)   (871)
                                  (5431)  (851)   (6531)  (961)
                                          (6431)  (7431)  (6532)
                                          (6521)  (7521)  (6541)
                                                          (7621)
                                                          (8431)
For example, (4,3,1,0) has first differences (-1,-2,-1), which is not unimodal, so (4,3,1) is counted under a(8).
		

Crossrefs

Strict partitions are A000009.
Partitions covering an initial interval are (also) A000009.
The non-strict version is A332284.
The complement is counted by A332285.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Partitions with non-unimodal run-lengths are A332281.
Normal partitions whose run-lengths are not unimodal are A332579.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,!unimodQ[Differences[Append[#,0]]]]&]],{n,0,30}]

A332579 Number of integer partitions of n covering an initial interval of positive integers with non-unimodal run-lengths.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 4, 7, 8, 10, 14, 19, 22, 30, 36, 43, 56, 69, 80, 101, 121, 141, 172, 202, 234, 282, 332, 384, 452, 527, 602, 706, 815, 929, 1077, 1236, 1403, 1615, 1842, 2082, 2379, 2702, 3044, 3458, 3908, 4388, 4963, 5589, 6252
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
Also the number of strict integer partitions of n whose negated first differences (assuming the last part is zero) are not unimodal.

Examples

			The a(10) = 1 through a(16) = 7 partitions:
  33211  332111  3321111  333211    433211     443211      443221
                          33211111  3332111    4332111     3333211
                                    332111111  33321111    4432111
                                               3321111111  33322111
                                                           43321111
                                                           333211111
                                                           33211111111
		

Crossrefs

The complement is counted by A332577.
Not requiring the partition to cover an initial interval gives A332281.
The opposite version is A332286.
A version for compositions is A332743.
Partitions covering an initial interval of positive integers are A000009.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers whose prime signature is not unimodal are A332282.
Partitions whose 0-appended first differences are unimodal are A332283.
Compositions whose negated run-lengths are not unimodal are A332727.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&!unimodQ[Length/@Split[#]]&]],{n,0,30}]

A072707 Number of non-unimodal compositions of n into distinct terms.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 2, 4, 6, 24, 26, 46, 64, 100, 224, 276, 416, 590, 850, 1144, 2214, 2644, 3938, 5282, 7504, 9776, 13704, 21984, 27632, 38426, 51562, 69844, 91950, 123504, 159658, 246830, 303400, 416068, 540480, 730268, 933176, 1248110
Offset: 0

Views

Author

Henry Bottomley, Jul 04 2002

Keywords

Comments

Also the number of compositions of n into distinct terms whose negation is not unimodal. - Gus Wiseman, Mar 05 2020

Examples

			a(6)=2 since 6 can be written as 2+1+3 or 3+1+2.
From _Gus Wiseman_, Mar 05 2020: (Start)
The a(6) = 2 through a(9) = 6 strict compositions:
  (2,1,3)  (2,1,4)  (2,1,5)  (2,1,6)
  (3,1,2)  (4,1,2)  (3,1,4)  (3,1,5)
                    (4,1,3)  (3,2,4)
                    (5,1,2)  (4,2,3)
                             (5,1,3)
                             (6,1,2)
(End)
		

Crossrefs

The complement is counted by A072706.
The non-strict version is A115981.
The case where the negation is not unimodal either is A332874.
Unimodal compositions are A001523.
Strict compositions are A032020.
Non-unimodal permutations are A059204.
A triangle for strict unimodal compositions is A072705.
Non-unimodal sequences covering an initial interval are A328509.
Numbers whose prime signature is not unimodal are A332282.
Strict partitions whose 0-appended differences are not unimodal are A332286.
Compositions whose negation is unimodal are A332578.
Compositions whose negation is not unimodal are A332669.
Non-unimodal compositions covering an initial interval are A332743.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&!unimodQ[#]&]],{n,0,16}] (* Gus Wiseman, Mar 05 2020 *)

Formula

a(n) = A032020(n) - A072706(n) = Sum_{k} A059204(k) * A060016(n, k).

A332873 Number of non-unimodal, non-co-unimodal sequences of length n covering an initial interval of positive integers.

Original entry on oeis.org

0, 0, 0, 0, 22, 340, 3954, 44716, 536858, 7056252, 102140970, 1622267196, 28090317226, 526854073564, 10641328363722, 230283141084220, 5315654511587498, 130370766447282204, 3385534661270087178, 92801587312544823804, 2677687796221222845802, 81124824998424994578652
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. It is co-unimodal if its negative is unimodal.

Examples

			The a(4) = 22 sequences:
  (1,2,1,2)  (2,3,1,3)
  (1,2,1,3)  (2,3,1,4)
  (1,3,1,2)  (2,4,1,3)
  (1,3,2,3)  (3,1,2,1)
  (1,3,2,4)  (3,1,3,2)
  (1,4,2,3)  (3,1,4,2)
  (2,1,2,1)  (3,2,3,1)
  (2,1,3,1)  (3,2,4,1)
  (2,1,3,2)  (3,4,1,2)
  (2,1,4,3)  (4,1,3,2)
  (2,3,1,2)  (4,2,3,1)
		

Crossrefs

Not requiring non-co-unimodality gives A328509.
Not requiring non-unimodality also gives A328509.
The version for run-lengths of partitions is A332640.
The version for unsorted prime signature is A332643.
The version for compositions is A332870.
Unimodal compositions are A001523.
Unimodal sequences covering an initial interval are A007052.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Unimodal compositions covering an initial interval are A227038.
Numbers whose unsorted prime signature is not unimodal are A332282.
Numbers whose negated prime signature is not unimodal are A332642.
Compositions whose run-lengths are not unimodal are A332727.
Non-unimodal compositions covering an initial interval are A332743.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Union@@Permutations/@allnorm[n],!unimodQ[#]&&!unimodQ[-#]&]],{n,0,5}]
  • PARI
    seq(n)=Vec( serlaplace(1/(2-exp(x + O(x*x^n)))) - (1 - 6*x + 12*x^2 - 6*x^3)/((1 - x)*(1 - 2*x)*(1 - 4*x + 2*x^2)), -(n+1)) \\ Andrew Howroyd, Jan 28 2024

Formula

a(n) = A000670(n) + A000225(n) - 2*A007052(n-1) for n > 0. - Andrew Howroyd, Jan 28 2024

Extensions

a(9) onwards from Andrew Howroyd, Jan 28 2024

A337459 Numbers k such that the k-th composition in standard order is a unimodal triple.

Original entry on oeis.org

7, 11, 13, 14, 19, 21, 25, 26, 28, 35, 37, 41, 42, 49, 50, 52, 56, 67, 69, 73, 74, 81, 82, 84, 97, 98, 100, 104, 112, 131, 133, 137, 138, 145, 146, 161, 162, 164, 168, 193, 194, 196, 200, 208, 224, 259, 261, 265, 266, 273, 274, 289, 290, 292, 321, 322, 324
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding triples begins:
      7: (1,1,1)     52: (1,2,3)    133: (5,2,1)
     11: (2,1,1)     56: (1,1,4)    137: (4,3,1)
     13: (1,2,1)     67: (5,1,1)    138: (4,2,2)
     14: (1,1,2)     69: (4,2,1)    145: (3,4,1)
     19: (3,1,1)     73: (3,3,1)    146: (3,3,2)
     21: (2,2,1)     74: (3,2,2)    161: (2,5,1)
     25: (1,3,1)     81: (2,4,1)    162: (2,4,2)
     26: (1,2,2)     82: (2,3,2)    164: (2,3,3)
     28: (1,1,3)     84: (2,2,3)    168: (2,2,4)
     35: (4,1,1)     97: (1,5,1)    193: (1,6,1)
     37: (3,2,1)     98: (1,4,2)    194: (1,5,2)
     41: (2,3,1)    100: (1,3,3)    196: (1,4,3)
     42: (2,2,2)    104: (1,2,4)    200: (1,3,4)
     49: (1,4,1)    112: (1,1,5)    208: (1,2,5)
     50: (1,3,2)    131: (6,1,1)    224: (1,1,6)
		

Crossrefs

A337460 is the non-unimodal version.
A000217(n - 2) counts 3-part compositions.
6*A001399(n - 6) = 6*A069905(n - 3) = 6*A211540(n - 1) counts strict 3-part compositions.
A001399(n - 3) = A069905(n) = A211540(n + 2) counts 3-part partitions.
A001399(n - 6) = A069905(n - 3) = A211540(n - 1) counts strict 3-part partitions.
A001523 counts unimodal compositions.
A007052 counts unimodal patterns.
A011782 counts unimodal permutations.
A115981 counts non-unimodal compositions.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Triples are A014311, with strict case A337453.
- Sum is A070939.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Heinz number is A333219.
- Combinatory separations are counted by A334030.
- Non-unimodal compositions are A335373.
- Non-co-unimodal compositions are A335374.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],Length[stc[#]]==3&&!MatchQ[stc[#],{x_,y_,z_}/;x>y
    				

Formula

Complement of A335373 in A014311.
Showing 1-10 of 11 results. Next